雙曲正弦積分函數定義為[1][2] Shi(x) 2D plot S h i ( z ) = ∫ 0 z sinh ( t ) t d t {\displaystyle {\it {Shi}}\left(z\right)=\int _{0}^{z}\!{\frac {\sinh \left(t\right)}{t}}{dt}} S h i ( z ) {\displaystyle Shi(z)} 是下列三階常微分方程的一個解: z d d z w ( z ) − 2 d 2 d z 2 w ( z ) − z d 3 d z 3 w ( z ) = 0 {\displaystyle z{\frac {d}{dz}}w\left(z\right)-2\,{\frac {d^{2}}{d{z}^{2}}}w\left(z\right)-z{\frac {d^{3}}{d{z}^{3}}}w\left(z\right)=0} 即: w ( z ) = _ C 1 + _ C 2 S h i ( z ) + _ C 3 C h i ( z ) {\displaystyle w\left(z\right)={\it {\_C1}}+{\it {\_C2}}\,{\it {Shi}}\left(z\right)+{\it {\_C3}}\,{\it {Chi}}\left(z\right)} Remove ads與其他特殊函數的關係 Meijer G函數 {\displaystyle } 超幾何函數 S h i ( z ) = z ∗ 1 F 2 ( 1 / 2 ; 3 / 2 , 3 / 2 ; ( 1 / 4 ) ∗ z 2 ) {\displaystyle Shi(z)=z*_{1}F_{2}(1/2;3/2,3/2;(1/4)*z^{2})} − 1 2 i π G 1 , 3 1 , 1 ( − 1 / 4 z 2 | 1 / 2 , 0 , 0 1 ) {\displaystyle {\frac {-1}{2}}\,i{\sqrt {\pi }}G_{1,3}^{1,1}\left(-1/4\,{z}^{2}\,{\Big \vert }\,_{1/2,0,0}^{1}\right)} Remove ads級數展開 S h i ( z ) = ( z + 1 18 z 3 + 1 600 z 5 + 1 35280 z 7 + 1 3265920 z 9 + 1 439084800 z 11 + 1 80951270400 z 13 + O ( z 15 ) ) {\displaystyle {\it {Shi}}\left(z\right)=(z+{\frac {1}{18}}{z}^{3}+{\frac {1}{600}}{z}^{5}+{\frac {1}{35280}}{z}^{7}+{\frac {1}{3265920}}{z}^{9}+{\frac {1}{439084800}}{z}^{11}+{\frac {1}{80951270400}}{z}^{13}+O\left({z}^{15}\right))} Remove ads帕德近似 帕德近似 S h i ( z ) ≈ ( 33317056220720070437 9686419676455776844590000 z 7 + 67177799936189717 98024149196718942600 z 5 + 540705278447237 16111793096107650 z 3 + z ) ( 1 − 177197169001594 8055896548053825 z 2 + 87368534024947 363052404432292380 z 4 − 212787117226481 131788022808922133940 z 6 + 10065927082366801 1707972775603630855862400 z 8 ) − 1 {\displaystyle Shi(z)\approx \left({\frac {33317056220720070437}{9686419676455776844590000}}\,{z}^{7}+{\frac {67177799936189717}{98024149196718942600}}\,{z}^{5}+{\frac {540705278447237}{16111793096107650}}\,{z}^{3}+z\right)\left(1-{\frac {177197169001594}{8055896548053825}}\,{z}^{2}+{\frac {87368534024947}{363052404432292380}}\,{z}^{4}-{\frac {212787117226481}{131788022808922133940}}\,{z}^{6}+{\frac {10065927082366801}{1707972775603630855862400}}\,{z}^{8}\right)^{-1}} Remove ads圖集 Shi(x) Re complex 3D plot Shi(x) Im complex 3D plot Shi(x) abs complex 3D plot Shi(x) abs complex density plot Shi(x) Re complex density plot Shi(x) Im complex density plot 參見 Sinhc函數 Coshc函數 Tanc函數 Tanhc函數 Chi函數 參考文獻Loading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads