热门问题
时间线
聊天
视角
概週期函數
来自维基百科,自由的百科全书
Remove ads
在數學中,概週期函數(或殆週期函數)是一類有近似於週期性質的函數,是連續週期函數的推廣。不同的週期函數由於週期不盡相同,其和、差或乘積不一定再是週期函數。概週期函數儘管未必有嚴格的週期性,但可擁有一些比週期函數更好的性質。這一概念首先於1925年被丹麥數學家哈那德·玻爾引進,後來赫曼·外爾、貝西科維奇等人也有研究和推廣[1]。貝西科維奇因概週期函數方面的貢獻獲得了1931年劍橋大學的亞當斯獎[2]。
定義
概週期函數有若干個等價定義。根據哈那德·玻爾引進的分析學上的定義,一個定義域在實數體上的連續函數 如果滿足:對任意正實數,都存在實數,使得任意長度為 的區間裡至少存在一個數,使得對於任意的,都有:
在高維歐幾里得空間中,也可以定義類似的概週期向量函數。
按照定義,所有週期函數都是概週期函數。
值域在復平面上的概週期函數與三角多項式函數有密切關係。哈那德·玻爾首先注意到這類型的函數是在研究有限項狄利克雷級數的時候。當把黎曼ζ函數:ζ(s) 截出有限項後,得到的是一些形如
的項。其中的。如果只考慮復平面上的一條豎直的直線(也就是說固定s 的實數部份,而實數 在正負無窮大之間變動),那麼實際上每一項變成:
如果只觀察有限個這樣的函數的和(以避免 時的解析開拓的問題),那麼由於對不同的n,是線性獨立的,這個和不再是一個週期函數。
在相關研究中,哈那德·玻爾開始注意形如:
的三角多項式函數。它是若干個週期互不相同的週期函數的和。於是概週期函數的另一個定義出現了:如果對每個,都存在三角多項式函數:,使得對於任意的,都有:
可以證明,這個定義與第一個定義是等價的[1]。
Remove ads
例子
考慮若干三角多項式函數:
其中 是複數。每一個 都是週期函數,因此有限個 的和仍然是概週期函數。然而,對於某些和函數,比如說:
不是週期函數,但仍然是概週期函數。
Remove ads
性質
Remove ads
參看
參考書籍
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads