热门问题
时间线
聊天
视角

大数 (数学)

来自维基百科,自由的百科全书

大数 (数学)
Remove ads

大数是指远远超出了日常生活使用范围(例如简单的计数或金融交易)的数字,在各个领域都发挥着至关重要的作用。这些庞大的数量在数学宇宙学密码学统计力学中占有重要地位。虽然它们通常表现为较大的正整数,但它们也可以在不同情况下呈现其他形式(例如P进数)。大数学(英語:Googology[1]深入研究了这些巨大数字实体的命名约定和属性。

各种各样的
基本

Thumb

延伸
其他

圓周率
自然對數的底
虛數單位
無限大

Remove ads

表示法

科学计数法

大数字通常采用科学计数法计数,即把数字记成ɑ×10n形式(其中1≤|ɑ|<10)。如59000写作5.9×104等。

分级法

更多信息 數量級, 中文萬進制 ...

著名的大数

美国数学家爱德华·卡斯纳(Edward Kasner)在1940年创造,代表10100(1后面接100个0,按数位念作“一万亿亿亿亿亿亿亿亿亿亿亿亿”,一万后念12个“亿”)

表示10的一个古戈尔次,即1010100(1后面接10100个0)。

表示素数计数函数对数积分函數交叉點的數值上界,斯奎斯於1933年證明了其中一個上界,又被稱作第一斯奎斯數

(左為準確值,右為近似值)。
  • 葛立恆數(簡稱G64,因為必須使用64層高德納箭號表示法才表示得出來)
  • TREE(3)英语TREE(3)
  • 拉約數(英語:Rayo's number
Remove ads

大數記號

雖然在現實世界中,使用指數來表示大數就已經綽綽有餘,但是在少數的數學問題中會用到的大數,如葛立恆數,仍然是不能用指數來表示的。為了表達這樣的大數,數學家們想出了以下記號:

  • 高德納箭號表示法多層嵌套的指數塔,是一個簡單的符號。
  • 超運算按照加法、乘法和冪的遞迴模式來構造更高級的運算,本質上跟箭號表示法是一樣的。
  • 康威鏈式箭號表示法這種記號是箭號表示法的一種延伸,它能夠表示遠遠超出葛立恆數的數。
  • 斯坦豪斯-莫澤表示法透過多邊形來表示大數。
  • 超階乘階乘的一個擴展。
  • 阿克曼函數是一個二元函數,增長率非常快,跟高德納箭號表示法是同一個等級。
  • 旋轉箭號表示法它是箭號表示法跟鏈式箭號表示法的延伸,並且所能構造的大數比它們更大。
  • BEAF就算是開頭的線性數陣等級,也遠遠超越了上面的大多數記號。
  • SUPER它是上面線性數陣的延伸,能够構造出遠遠大於上面線性數陣的超級大數。

大数表示发展史

大数的表示最早在古希腊数学家阿基米德开始,他在理论上提出了一种表示大数的方法,但他是否创设了适当的符号不得而知。在他的著作《论数沙》中有这样一段文字:

有人认为,无论是在叙拉古城,还是在整个西西里岛或者在世界上有人烟和没有人迹的地方,沙粒的数目都是无穷的;也有人认为沙粒的数目不是无穷的‘但是想表示沙子的数目是办不到的……但是,我要告诉大家,用我找到的方法,不但能表示出占地球那么大地方的沙粒的数目,甚至还能表示把所有的海洋洞穴都填满了沙粒,这些沙粒总数不会超过1后面有100个零。

在这段文字中,“1后面连续有100个零”即10100[4]

参考文献

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads