Loading AI tools
Basis des natürlichen Logarithmus Aus Wikipedia, der freien Enzyklopädie
Die Eulersche Zahl, mit dem Symbol bezeichnet, ist eine Konstante, die in der gesamten Analysis und allen damit verbundenen Teilgebieten der Mathematik, besonders in der Differential- und Integralrechnung, aber auch in der Stochastik (Kombinatorik, Normalverteilung) eine zentrale Rolle spielt. Ihr numerischer Wert beträgt
ist eine transzendente und somit auch irrationale reelle Zahl. Sie ist die Basis des natürlichen Logarithmus und der (natürlichen) Exponentialfunktion. In der angewandten Mathematik spielt die Exponentialfunktion und somit eine bedeutende Rolle bei der Beschreibung von Vorgängen wie dem radioaktiven Zerfall und dem natürlichen Wachstum.
Es gibt zahlreiche äquivalente Definitionen von , die bekannteste lautet:
Die Zahl wurde nach dem Schweizer Mathematiker Leonhard Euler benannt,[2] der zahlreiche Eigenschaften von beschrieb. Gelegentlich wird sie auch nach dem schottischen Mathematiker John Napier als Napiers Konstante (oder Nepersche Konstante) bezeichnet. Sie gehört zu den wichtigsten Konstanten der Mathematik.
Es gibt einen internationalen Tag der Eulerschen Zahl . In Ländern, in denen wie in Deutschland beim Datum der Tag vor dem Monat (27.1.) geschrieben wird, ist er am 27. Januar,[3] in Ländern, in denen wie in den USA der Monat vor dem Tag geschrieben wird (2/7), am 7. Februar.
Die Zahl wurde von Leonhard Euler durch die folgende Reihe definiert:[4]
Für ist dabei die Fakultät von , also im Falle das Produkt der natürlichen Zahlen von bis , während definiert ist.
Wie schon Euler bewies, erhält man die Eulersche Zahl auch als funktionalen Grenzwert.[5]
Die Zahl kann auch als Grenzwert der Folge mit geschrieben werden:
Dem liegt zugrunde, dass
gilt, also der Funktionswert der Exponentialfunktion (oder auch „-Funktion“) an der Stelle ist. Die obige Reihendarstellung von ergibt sich in diesem Zusammenhang dadurch, dass man die Taylorreihe der Exponentialfunktion um die Entwicklungsstelle an der Stelle auswertet.
Ein alternativer Zugang zur Definition der Eulerschen Zahl ist derjenige über Intervallschachtelungen, etwa in der Weise, wie es in Theorie und Anwendung der unendlichen Reihen von Konrad Knopp dargestellt wird. Danach gilt für alle :[6]
Die Entstehung der Zahl lässt sich auch grafisch veranschaulichen. Aus der Abbildung ergibt sich folgender Zusammenhang[7]:
Die Geschichte der Eulerschen Zahl beginnt bereits im 16. Jahrhundert mit drei Problembereichen, in denen eine Zahl auftaucht, der sich damals die Mathematiker näherten und die später genannt wurde:
Als frühestes Dokument, das die Verwendung des Buchstabens für diese Zahl durch Leonhard Euler aufweist, gilt ein Brief Eulers an Christian Goldbach vom 25. November 1731.[16] Noch früher, 1727 oder 1728, begann Euler, den Buchstaben zu benutzen, und zwar im Artikel „Meditatio in experimenta explosione tormentorum nuper instituta“ über Explosivkräfte in Kanonen, der allerdings erst 1862 veröffentlicht wurde.[17][18] Als nächste gesicherte Quelle für die Verwendung dieses Buchstabens gilt Eulers Werk Mechanica sive motus scientia analytice exposita, II aus dem Jahre 1736.[6] In der im Jahre 1748 erschienenen Introductio in analysin infinitorum greift Euler diese Bezeichnung wieder auf.[19]
Es gibt keine Hinweise darauf, dass diese Wahl des Buchstabens in Anlehnung an seinen Namen geschah. Unklar ist auch, ob er dies in Anlehnung an die Exponentialfunktion oder aus praktischen Erwägungen der Abgrenzung zu den viel benutzten Buchstaben a, b, c oder d machte. Obwohl auch andere Bezeichnungen in Gebrauch waren, etwa c in d’Alemberts Histoire de l’Académie, hat sich durchgesetzt.
Im Formelsatz wird nach DIN 1338 und ISO 80000-2 nicht kursiv gesetzt, um die Zahl von einer Variablen zu unterscheiden.[20] Allerdings ist auch die kursive Schreibweise verbreitet.
Die Eulersche Zahl ist eine transzendente (Beweis nach Charles Hermite, 1873) und damit irrationale Zahl (Beweis mit Kettenbrüchen für und somit bereits 1737 von Euler,[21] Beweis im Beweisarchiv bzw. Artikel). Sie lässt sich also (wie auch die Kreiszahl nach Ferdinand von Lindemann 1882) nicht als Bruch zweier natürlicher Zahlen (sogar nicht einmal als Lösung einer algebraischen Gleichung) darstellen und besitzt folglich eine unendliche nichtperiodische Dezimalbruchentwicklung. Das Irrationalitätsmaß von ist 2 und somit so klein wie möglich für eine irrationale Zahl, insbesondere ist nicht liouvillesch. Es ist nicht bekannt, ob zu irgendeiner Basis normal ist.[22]
In der Eulerschen Identität
werden fundamentale mathematische Konstanten in Zusammenhang gesetzt: die ganze Zahl 1, die Eulersche Zahl , die imaginäre Einheit der komplexen Zahlen und die Kreiszahl .
Die Eulersche Zahl tritt auch in der asymptotischen Abschätzung der Fakultät auf (siehe Stirlingformel):[23]
Die Cauchy-Produktformel für die beiden (jeweils absolut konvergenten) Reihen und der binomische Lehrsatz ergeben
und daraus folgt sofort:
Eine geometrische Interpretation der Eulerschen Zahl liefert die Integralrechnung. Danach ist diejenige eindeutig bestimmte Zahl , für die der Inhalt der Fläche unterhalb des Funktionsgraphen der reellen Kehrwertfunktion im Intervall exakt gleich ist:[24]
Die Eulersche Zahl lässt sich auch durch
oder durch den Grenzwert des Quotienten aus Fakultät und Subfakultät beschreiben:
Eine Verbindung zur Verteilung der Primzahlen wird über die Formeln
deutlich, wobei die Primzahlfunktion und das Symbol das Primorial der Zahl bedeutet.
Auch eher von exotischem Reiz als von praktischer Bedeutung ist die catalansche Darstellung
Im Zusammenhang mit der Zahl gibt es spätestens seit dem Erscheinen von Leonhard Eulers Introductio in Analysin Infinitorum im Jahre 1748 eine große Anzahl Kettenbruchentwicklungen für und aus ableitbare Größen.
So hat Euler die folgende klassische Identität für gefunden:
Die Identität (1) weist offenbar ein regelmäßiges Muster auf, das sich bis ins Unendliche fortsetzt. Sie gibt einen regulären Kettenbruch wieder, der von Euler aus dem folgenden abgeleitet wurde:[25]
Dieser Kettenbruch ist seinerseits ein Spezialfall des folgenden mit :
Eine andere klassische Kettenbruchentwicklung, die jedoch nicht regelmäßig ist, stammt ebenfalls von Euler:[26]
Auf Euler und Ernesto Cesàro geht eine weitere Kettenbruchentwicklung der Eulerschen Zahl zurück, die von anderem Muster als in (1) ist:[27]
Im Zusammenhang mit der Eulerschen Zahl existiert darüber hinaus eine große Anzahl von allgemeinen kettenbruchtheoretischen Funktionalgleichungen. So nennt Oskar Perron als eine von mehreren die folgende allgemeingültige Darstellung der -Funktion:[27]
Ein weiteres Beispiel hierfür ist die von Johann Heinrich Lambert stammende Entwicklung des Tangens hyperbolicus, die zu den lambertschen Kettenbrüchen gerechnet wird:[28][29]
Erst 2019 wurde mit Hilfe eines Computerprogrammes, das nach Srinivasa Ramanujan als Ramanujan-Maschine benannt wurde, letztlich basierend auf einer Trial-and-error-Methode, durch ein Team um Gal Raayoni am Technion eine weitere und bisher unbekannte Kettenbruchentwicklung für die Eulersche Zahl gefunden. Gegenüber allen bisher bekannten Kettenbruchentwicklungen, die alle von einer beliebigen ganzzahligen Zahl, die kleiner als die Eulersche Zahl ist, aufsteigen, handelt es sich hier erstmals um eine, die von der ganzen Zahl 3, einer ganzen Zahl, die größer ist als die Eulersche Zahl, absteigt.[30] Allein das Auffinden eines (einzigen) solchen absteigenden Kettenbruchs von einer ganzen Zahl größer als die Eulersche Zahl legt die Vermutung nahe, dass es unendlich viele solcher absteigenden Kettenbrüche von ganzen Zahlen mit gibt, die ebenfalls auf die Eulersche Zahl führen.
Das folgende Beispiel macht die Berechnung der Eulerschen Zahl nicht nur anschaulicher, sondern es beschreibt auch die Geschichte der Entdeckung der Eulerschen Zahl: Ihre ersten Stellen wurden von Jakob I Bernoulli bei der Untersuchung der Zinseszinsrechnung gefunden.
Den Grenzwert der ersten Formel kann man folgendermaßen deuten: Jemand zahlt am 1. Januar einen Euro auf der Bank ein. Die Bank garantiert ihm eine momentane Verzinsung zu einem Zinssatz pro Jahr. Wie groß ist sein Guthaben am 1. Januar des nächsten Jahres, wenn er die Zinsen zu gleichen Bedingungen anlegt?
Nach der Zinseszinsformel wird aus dem Startkapital nach Verzinsungen mit Zinssatz das Kapital
In diesem Beispiel sind und , wenn der Zinszuschlag jährlich erfolgt, oder , wenn der Zinszuschlag -mal im Jahr erfolgt, also bei unterjähriger Verzinsung.
Bei jährlichem Zuschlag wäre
Bei halbjährlichem Zuschlag hat man ,
also schon etwas mehr. Bei täglicher Verzinsung mit erhält man
Wenn die Verzinsung kontinuierlich in jedem Augenblick erfolgt, wird unendlich groß, und man bekommt die oben angegebene erste Formel für .
ist auch häufig in der Wahrscheinlichkeitstheorie anzutreffen: Beispielsweise sei angenommen, dass ein Bäcker für jedes Brötchen eine Rosine in den Teig gibt und diesen gut durchknetet. Danach enthält statistisch gesehen jedes -te Brötchen keine Rosine. Die Wahrscheinlichkeit , dass bei Brötchen keine der Rosinen in einem fest gewählten ist, ergibt im Grenzwert für (37-%-Regel):
Es werden Briefe und die zugehörigen Briefumschläge mit den Adressen unabhängig voneinander geschrieben. Dann werden ohne hinzusehen, also rein zufällig, die Briefe in die Briefumschläge gesteckt. Wie groß ist die Wahrscheinlichkeit, dass kein Brief im richtigen Umschlag steckt? Euler löste diese Aufgabe und veröffentlichte sie 1751 im Aufsatz „Calcul de la probabilité dans le jeu de rencontre“. Bemerkenswert ist, dass sich ab einer Anzahl von sieben Briefen die Wahrscheinlichkeit fast nicht mehr ändert. Sie wird sehr gut durch angenähert, den Grenzwert der Wahrscheinlichkeiten, wenn die Anzahl an Briefen immer größer wird.
Einem Jäger steht nur ein Schuss zur Verfügung. Er soll aus einer Schar Tauben, deren Anzahl er kennt, die in zufälliger Reihenfolge an ihm vorbeifliegen, die größte schießen. Mit welcher Strategie sind seine Chancen maximal, die größte Taube zu treffen? Dieses Taubenproblem wurde vom amerikanischen Mathematiker Herbert Robbins formuliert. Dasselbe Entscheidungsproblem besteht auch bei der Anstellung des besten Mitarbeiters bei Bewerbern (Sekretärinnenproblem) und ähnlichen Einkleidungen. Lösung: Die optimale Strategie besteht darin, erst Tauben vorbeifliegen zu lassen und dann auf die nächste Taube zu schießen, die größer als alle bisher vorbeigeflogenen ist, oder auf die allerletzte, wenn bis dahin keine größere vorbeigeflogen ist. Die Wahrscheinlichkeit, die größte Taube zu erwischen, beträgt bei dieser optimalen Strategie ungefähr unabhängig von , das jedoch nicht zu klein sein sollte. Wenn wir als Schätzwert für wählen, dann folgt . Also sollte man bei 27 Tauben erst 10 vorbeifliegen lassen. Bemerkenswert ist, dass man bei rund aller Fälle nicht die gewünschte optimale Lösung erhält.[31]
Bei der Poisson-, der Exponential- und der Normalverteilung wird neben anderen Größen zur Beschreibung der Verteilung benutzt.
Die Eulersche Zahl taucht an verschiedenen wichtigen Stellen in der Mathematik auf: