Top Qs
Timeline
Chat
Perspective

December 2028 lunar eclipse

Astronomical event From Wikipedia, the free encyclopedia

December 2028 lunar eclipse
Remove ads

A total lunar eclipse will occur at the Moon’s descending node of orbit on Sunday, December 31, 2028,[1] with an umbral magnitude of 1.2479. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 4.3 days before perigee (on January 4, 2029, at 23:15 UTC), the Moon's apparent diameter will be larger.[2]

Quick Facts Date, Gamma ...
Remove ads

This eclipse will occur during a blue moon and is the first such eclipse to happen on New Year's Eve and New Year's Day since December 2009, and the first total lunar eclipse on New Year's Day in history. The next such eclipse will be in December 2047 (though January 2048 for most timezones).

Remove ads

Visibility

The eclipse will be completely visible over eastern Europe, Asia, and Australia, seen rising over Africa and Europe and setting over the eastern Pacific Ocean and western North America.[3]

Thumb Thumb

Eclipse details

Shown below is a table displaying details about this particular lunar eclipse. It describes various parameters pertaining to this eclipse.[4]

More information Parameter, Value ...
Remove ads

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

More information December 31Descending node (full moon), January 14Ascending node (new moon) ...
Summarize
Perspective

Eclipses in 2028

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 125

Inex

Triad

Lunar eclipses of 2027–2031

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The penumbral lunar eclipses on February 20, 2027 and August 17, 2027 occur in the previous lunar year eclipse set, and the penumbral lunar eclipses on May 7, 2031 and October 30, 2031 occur in the next lunar year eclipse set.

More information Lunar eclipse series sets from 2027 to 2031, Ascending node ...

Saros 125

This eclipse is a part of Saros series 125, repeating every 18 years, 11 days, and containing 72 events. The series started with a penumbral lunar eclipse on July 17, 1163. It contains partial eclipses from January 17, 1470 through June 6, 1686; total eclipses from June 17, 1704 through March 19, 2155; and a second set of partial eclipses from March 29, 2173 through June 25, 2317. The series ends at member 72 as a penumbral eclipse on September 9, 2443.

The longest duration of totality was produced by member 37 at 100 minutes, 23 seconds on August 22, 1812. All eclipses in this series occur at the Moon’s descending node of orbit.[6]

More information Greatest, First ...

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

More information Series members 37–58 occur between 1801 and 2200: ...

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two annular solar eclipses of Solar Saros 132.

More information January 5, 2038 ...
Remove ads

See also

Notes

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads