Top Qs
Timeline
Chat
Perspective

February 1971 lunar eclipse

Total lunar eclipse February 10, 1971 From Wikipedia, the free encyclopedia

February 1971 lunar eclipse
Remove ads

A total lunar eclipse occurred at the Moon’s descending node of orbit on Wednesday, February 10, 1971,[1] with an umbral magnitude of 1.3082. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 2.8 days before apogee (on February 13, 1971, at 2:10 UTC), the Moon's apparent diameter was smaller.[2]

Quick Facts Date, Gamma ...
Remove ads
Remove ads

Visibility

The eclipse was completely visible over North America and northwestern South America, seen rising over east Asia and northeast Asia and Australia and setting over much of South America, Europe, and west and central Africa.[3]

Thumb Thumb

Eclipse details

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

More information Parameter, Value ...
Remove ads

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

More information February 10Descending node (full moon), February 25Ascending node (new moon) ...
Summarize
Perspective

Eclipses in 1971

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 123

Inex

Triad

  • Preceded by: Lunar eclipse of April 10, 1884
  • Followed by: Lunar eclipse of December 11, 2057

Lunar eclipses of 1969–1973

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The penumbral lunar eclipses on April 2, 1969 and September 25, 1969 occur in the previous lunar year eclipse set, and the lunar eclipses on June 15, 1973 (penumbral) and December 10, 1973 (partial) occur in the next lunar year eclipse set.

More information Lunar eclipse series sets from 1969 to 1973, Ascending node ...

Saros 123

This eclipse is a part of Saros series 123, repeating every 18 years, 11 days, and containing 72 events. The series started with a penumbral lunar eclipse on August 16, 1087. It contains partial eclipses from May 2, 1520 through July 6, 1610; total eclipses from July 16, 1628 through April 4, 2061; and a second set of partial eclipses from April 16, 2079 through July 2, 2205. The series ends at member 72 as a penumbral eclipse on October 8, 2367.

The longest duration of totality was produced by member 37 at 105 minutes, 58 seconds on September 20, 1736. All eclipses in this series occur at the Moon’s descending node of orbit.[6]

More information Greatest, First ...

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

More information Series members 41–62 occur between 1801 and 2200: ...

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 130.

February 5, 1962 February 16, 1980
Thumb Thumb
Remove ads

See also

Notes

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads