Top Qs
Timeline
Chat
Perspective

May 2021 lunar eclipse

Total lunar eclipse of 26 May 2021 From Wikipedia, the free encyclopedia

May 2021 lunar eclipse
Remove ads

A total lunar eclipse occurred at the Moon’s descending node of orbit on Wednesday, May 26, 2021,[1] with an umbral magnitude of 1.0112. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring only about 14 hours after perigee (on May 25, 2021, at 21:50 UTC), the Moon's apparent diameter was larger.[2]

Quick Facts Date, Gamma ...
Thumb
This animation shows the Moon moving west to east, passing into the shadow of Earth in Scorpius near the Milky Way. It first enters the outer penumbral shadow, and then the dark umbral shadow. Here, the brightness of the Moon is exaggerated within the umbral shadow. The southern part of the Moon is darkest due to it being closest to the centre of the shadow.

It was the first total lunar eclipse since the January 2019 lunar eclipse, and the first in a series of an almost tetrad (with four consecutive total or deep partial lunar eclipses).[3] The next total eclipse occurred in May 2022. The event took place near lunar perigee; as a result, this supermoon was referred to in US media coverage as a "super flower blood moon",[Note 1][4][5] and elsewhere as a "super blood moon".[6][7]

This lunar eclipse was the first of an almost tetrad, with the others being on November 19, 2021 (partial); May 16, 2022 (total); and November 8, 2022 (total).

Remove ads

Visibility

The eclipse was completely visible over Australia and the central Pacific Ocean, seen rising over south and east Asia and setting over North and South America.[8]

Thumb Thumb
Thumb
Visibility map

Timing

Summarize
Perspective

Local times are recomputed here for the time zones of the areas where the eclipse was visible:

More information Time Zoneadjustments from UTC, +8h ...
Thumb
Contact points relative to the Earth's umbral and penumbral shadows, here with the Moon near its descending node.
The timing of total lunar eclipses are determined by its contacts:[9]
  • P1 (First contact): Beginning of the penumbral eclipse. Earth's penumbra touches the Moon's outer limb.
  • U1 (Second contact): Beginning of the partial eclipse. Earth's umbra touches the Moon's outer limb.
  • U2 (Third contact): Beginning of the total eclipse. The Moon's surface is entirely within Earth's umbra.
  • Greatest eclipse: The peak stage of the total eclipse. The Moon is at its closest to the center of Earth's umbra.
  • U3 (Fourth contact): End of the total eclipse. The Moon's outer limb exits Earth's umbra.
  • U4 (Fifth contact): End of the partial eclipse. Earth's umbra leaves the Moon's surface.
  • P4 (Sixth contact): End of the penumbral eclipse. Earth's penumbra no longer makes contact with the Moon.
Remove ads

Eclipse details

Shown below is a table displaying details about this particular lunar eclipse. It describes various parameters pertaining to this eclipse.[10]

More information Parameter, Value ...
Remove ads

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

More information May 26Descending node (full moon), June 10Ascending node (new moon) ...
Remove ads
Summarize
Perspective

Eclipses in 2021

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 121

Inex

Triad

Lunar eclipses of 2020–2023

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[11]

The penumbral lunar eclipses on January 10, 2020 and July 5, 2020 occur in the previous lunar year eclipse set.

More information Lunar eclipse series sets from 2020 to 2023, Descending node ...

Saros 121

This eclipse is a part of Saros series 121, repeating every 18 years, 11 days, and containing 82 events. The series started with a penumbral lunar eclipse on October 6, 1047. It contains partial eclipses from May 10, 1408 through July 3, 1498; total eclipses from July 13, 1516 through May 26, 2021; and a second set of partial eclipses from June 6, 2039 through August 11, 2147. The series ends at member 82 as a penumbral eclipse on March 18, 2508.

The longest duration of totality was produced by member 43 at 100 minutes, 29 seconds on October 18, 1660. All eclipses in this series occur at the Moon’s descending node of orbit.[12]

More information Greatest, First ...

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

More information Series members 43–64 occur between 1801 and 2200: ...

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[14] This lunar eclipse is related to two annular solar eclipses of Solar Saros 128.

More information June 1, 2030 ...
Remove ads

See also

Notes

  1. A full moon occurring in May has been termed a "Flower moon" in the US as recorded in the Old Farmer's Almanac.

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads