Top Qs
Timeline
Chat
Perspective

Order-6 dodecahedral honeycomb

Regular geometrical object in hyperbolic space From Wikipedia, the free encyclopedia

Order-6 dodecahedral honeycomb
Remove ads
Remove ads

The order-6 dodecahedral honeycomb is one of 11 paracompact regular honeycombs in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of faces, with all vertices as ideal points at infinity. It has Schläfli symbol {5,3,6}, with six ideal dodecahedral cells surrounding each edge of the honeycomb. Each vertex is ideal, and surrounded by infinitely many dodecahedra. The honeycomb has a triangular tiling vertex figure.

Order-6 dodecahedral honeycomb

Perspective projection view
within Poincaré disk model
TypeHyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbol{5,3,6}
{5,3[3]}
Coxeter diagram
Cells{5,3}
Facespentagon {5}
Edge figurehexagon {6}
Vertex figure
triangular tiling
DualOrder-5 hexagonal tiling honeycomb
Coxeter group, [5,3,6]
, [5,3[3]]
PropertiesRegular, quasiregular

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Remove ads

Symmetry

A half symmetry construction exists as with alternately colored dodecahedral cells.

Images

Thumb
The model is cell-centered within the Poincaré disk model, with the viewpoint then placed at the origin.

The order-6 dodecahedral honeycomb is similar to the 2D hyperbolic infinite-order pentagonal tiling, {5,}, with pentagonal faces, and with vertices on the ideal surface.

Thumb
Summarize
Perspective

The order-6 dodecahedral honeycomb is a regular hyperbolic honeycomb in 3-space, and one of 11 which are paracompact.

There are 15 uniform honeycombs in the [5,3,6] Coxeter group family, including this regular form, and its regular dual, the order-5 hexagonal tiling honeycomb.

The order-6 dodecahedral honeycomb is part of a sequence of regular polychora and honeycombs with triangular tiling vertex figures:

More information Form, Paracompact ...

It is also part of a sequence of regular polytopes and honeycombs with dodecahedral cells:

More information {5,3,p} polytopes, Space ...

Rectified order-6 dodecahedral honeycomb

More information , ...

The rectified order-6 dodecahedral honeycomb, t1{5,3,6} has icosidodecahedron and triangular tiling cells connected in a hexagonal prism vertex figure.

Thumb
Perspective projection view within Poincaré disk model

It is similar to the 2D hyperbolic pentaapeirogonal tiling, r{5,} with pentagon and apeirogonal faces.

Thumb
More information Space, H3 ...

Truncated order-6 dodecahedral honeycomb

More information , ...

The truncated order-6 dodecahedral honeycomb, t0,1{5,3,6} has truncated dodecahedron and triangular tiling cells connected in a hexagonal pyramid vertex figure.

Thumb

Bitruncated order-6 dodecahedral honeycomb

The bitruncated order-6 dodecahedral honeycomb is the same as the bitruncated order-5 hexagonal tiling honeycomb.

Cantellated order-6 dodecahedral honeycomb

More information , ...

The cantellated order-6 dodecahedral honeycomb, t0,2{5,3,6}, has rhombicosidodecahedron, trihexagonal tiling, and hexagonal prism cells, with a wedge vertex figure.

Thumb

Cantitruncated order-6 dodecahedral honeycomb

More information , ...

The cantitruncated order-6 dodecahedral honeycomb, t0,1,2{5,3,6} has truncated icosidodecahedron, hexagonal tiling, and hexagonal prism facets, with a mirrored sphenoid vertex figure.

Thumb

Runcinated order-6 dodecahedral honeycomb

The runcinated order-6 dodecahedral honeycomb is the same as the runcinated order-5 hexagonal tiling honeycomb.

Runcitruncated order-6 dodecahedral honeycomb

More information ...

The runcitruncated order-6 dodecahedral honeycomb, t0,1,3{5,3,6} has truncated dodecahedron, rhombitrihexagonal tiling, decagonal prism, and hexagonal prism facets, with an isosceles-trapezoidal pyramid vertex figure.

Thumb

Runcicantellated order-6 dodecahedral honeycomb

The runcicantellated order-6 dodecahedral honeycomb is the same as the runcitruncated order-5 hexagonal tiling honeycomb.

Omnitruncated order-6 dodecahedral honeycomb

The omnitruncated order-6 dodecahedral honeycomb is the same as the omnitruncated order-5 hexagonal tiling honeycomb.

Remove ads

See also

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapter 16-17: Geometries on Three-manifolds I, II)
  • Norman Johnson Uniform Polytopes, Manuscript
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
    • N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups
Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads