Top Qs
Timeline
Chat
Perspective

Octagonal tiling

From Wikipedia, the free encyclopedia

Octagonal tiling
Remove ads

In geometry, the octagonal tiling is a regular tiling of the hyperbolic plane. It is represented by Schläfli symbol of {8,3}, having three regular octagons around each vertex. It also has a construction as a truncated order-8 square tiling, t{4,8}.

Octagonal tiling
Thumb
Poincaré disk model of the hyperbolic plane
TypeHyperbolic regular tiling
Vertex configuration83
Schläfli symbol{8,3}
t{4,8}
Wythoff symbol3 | 8 2
2 8 | 4
4 4 4 |
Coxeter diagram

Symmetry group[8,3], (*832)
[8,4], (*842)
[(4,4,4)], (*444)
DualOrder-8 triangular tiling
PropertiesVertex-transitive, edge-transitive, face-transitive
Remove ads

Uniform colorings

Like the hexagonal tiling of the Euclidean plane, there are 3 uniform colorings of this hyperbolic tiling. The dual tiling V8.8.8 represents the fundamental domains of [(4,4,4)] symmetry.

More information Regular, Truncations ...

Regular maps

The regular map {8,3}2,0 can be seen as a 6-coloring of the {8,3} hyperbolic tiling. Within the regular map, octagons of the same color are considered the same face shown in multiple locations. The 2,0 subscripts show the same color will repeat by moving 2 steps in a straight direction following opposite edges. This regular map also has a representation as a double covering of a cube, represented by Schläfli symbol {8/2,3}, with 6 octagonal faces, double wrapped {8/2}, with 24 edges, and 16 vertices. It was described by Branko Grünbaum in his 2003 paper Are Your Polyhedra the Same as My Polyhedra?[1]

Thumb
Remove ads
Summarize
Perspective

This tiling is topologically part of sequence of regular polyhedra and tilings with Schläfli symbol {n,3}.

More information Spherical, Euclidean ...

And also is topologically part of sequence of regular tilings with Schläfli symbol {8,n}.

More information Space, Spherical ...

From a Wythoff construction there are ten hyperbolic uniform tilings that can be based from the regular octagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 10 forms.

More information Symmetry: [8,3], (*832), [8,3]+ (832) ...
More information [8,4], (*842)(with [8,8] (*882), [(4,4,4)] (*444) , [∞,4,∞] (*4222) index 2 subsymmetries) (And [(∞,4,∞,4)] (*4242) index 4 subsymmetry), Uniform duals ...
More information Symmetry: [(4,4,4)], (*444), [(4,4,4)]+ (444) ...
Remove ads

See also

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads