Top Qs
Timeline
Chat
Perspective

Order-8 triangular tiling

Concept in geometry From Wikipedia, the free encyclopedia

Order-8 triangular tiling
Remove ads

In geometry, the order-8 triangular tiling is a regular tiling of the hyperbolic plane. It is represented by Schläfli symbol of {3,8}, having eight regular triangles around each vertex.

Order-8 triangular tiling
Thumb
Poincaré disk model of the hyperbolic plane
TypeHyperbolic regular tiling
Vertex configuration38
Schläfli symbol{3,8}
(3,4,3)
Wythoff symbol8 | 3 2
4 | 3 3
Coxeter diagram
Symmetry group[8,3], (*832)
[(4,3,3)], (*433)
[(4,4,4)], (*444)
DualOctagonal tiling
PropertiesVertex-transitive, edge-transitive, face-transitive
Remove ads

Uniform colorings

The half symmetry [1+,8,3] = [(4,3,3)] can be shown with alternating two colors of triangles:

Thumb

Symmetry

Summarize
Perspective
Thumb
Octagonal tiling with *444 mirror lines, .

From [(4,4,4)] symmetry, there are 15 small index subgroups (7 unique) by mirror removal and alternation operators. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. Adding 3 bisecting mirrors across each fundamental domains creates 832 symmetry. The subgroup index-8 group, [(1+,4,1+,4,1+,4)] (222222) is the commutator subgroup of [(4,4,4)].

A larger subgroup is constructed [(4,4,4*)], index 8, as (2*2222) with gyration points removed, becomes (*22222222).

The symmetry can be doubled to 842 symmetry by adding a bisecting mirror across the fundamental domains. The symmetry can be extended by 6, as 832 symmetry, by 3 bisecting mirrors per domain.

More information Index, Diagram ...
Remove ads
Summarize
Perspective
Thumb
The {3,3,8} honeycomb has {3,8} vertex figures.
More information Spherical, Euclid. ...

From a Wythoff construction there are ten hyperbolic uniform tilings that can be based from the regular octagonal and order-8 triangular tilings.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 10 forms.

More information Symmetry: [8,3], (*832), [8,3]+ (832) ...
More information Spherical, Hyperbolic tilings ...

It can also be generated from the (4 3 3) hyperbolic tilings:

More information Symmetry: [(4,3,3)], (*433), [(4,3,3)]+, (433) ...
More information Symmetry: [(4,4,4)], (*444), [(4,4,4)]+ (444) ...
Remove ads

See also

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads