Top Qs
Timeline
Chat
Perspective
Solar eclipse of August 2, 2046
Total eclipse From Wikipedia, the free encyclopedia
Remove ads
A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, August 2, 2046,[1] with a magnitude of 1.0531. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is greater than the Sun's, blocking all direct sunlight. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2 days before perigee (on August 4, 2046, at 10:20 UTC), the Moon's apparent diameter will be larger.[2]
The path of totality will be visible from parts of eastern Brazil, Angola, the panhandle of Namibia, Botswana, South Africa, Eswatini, extreme southern Mozambique, and the Kerguelen Islands. A partial solar eclipse will also be visible for parts of eastern South America, Africa, and East Antarctica.
Remove ads
Images
Eclipse timing
Places experiencing total eclipse
Places experiencing partial eclipse
Remove ads
Eclipse details
Summarize
Perspective
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the Moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Remove ads
Related eclipses
Eclipses in 2046
- A partial lunar eclipse on January 22.
- An annular solar eclipse on February 5.
- A partial lunar eclipse on July 18.
- A total solar eclipse on August 2.
Metonic
- Preceded by: Solar eclipse of October 14, 2042
- Followed by: Solar eclipse of May 20, 2050
Tzolkinex
- Preceded by: Solar eclipse of June 21, 2039
- Followed by: Solar eclipse of September 12, 2053
Half-Saros
- Preceded by: Lunar eclipse of July 27, 2037
- Followed by: Lunar eclipse of August 7, 2055
Tritos
- Preceded by: Solar eclipse of September 2, 2035
- Followed by: Solar eclipse of July 1, 2057
Solar Saros 146
- Preceded by: Solar eclipse of July 22, 2028
- Followed by: Solar eclipse of August 12, 2064
Inex
- Preceded by: Solar eclipse of August 21, 2017
- Followed by: Solar eclipse of July 13, 2075
Triad
- Preceded by: Solar eclipse of October 2, 1959
- Followed by: Solar eclipse of June 3, 2133
Solar eclipses of 2044–2047
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]
The partial solar eclipses on June 23, 2047 and December 16, 2047 occur in the next lunar year eclipse set.
Saros 146
This eclipse is a part of Saros series 146, repeating every 18 years, 11 days, and containing 76 events. The series started with a partial solar eclipse on September 19, 1541. It contains total eclipses from May 29, 1938 through October 7, 2154; hybrid eclipses from October 17, 2172 through November 20, 2226; and annular eclipses from November 30, 2244 through August 10, 2659. The series ends at member 76 as a partial eclipse on December 29, 2893. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 26 at 5 minutes, 21 seconds on June 30, 1992, and the longest duration of annularity will be produced by member 63 at 3 minutes, 30 seconds on August 10, 2659. All eclipses in this series occur at the Moon’s descending node of orbit.[5]
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads