Top Qs
Timeline
Chat
Perspective
Solar eclipse of October 2, 1959
Total eclipse From Wikipedia, the free encyclopedia
Remove ads
A total solar eclipse occurred at the Moon's ascending node of orbit on Friday, October 2, 1959,[1] with a magnitude of 1.0325. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.4 days before perigee (on October 4, 1959, at 21:10 UTC), the Moon's apparent diameter was larger.[2]
Totality was visible from northeastern Massachusetts and the southern tip of New Hampshire in the United States, the Canary Islands, Morocco, Spanish Sahara (today's West Sahara) including the capital city Laayoune, French Mauritania (today's Mauritania), Mali Federation (part now belonging to Mali), French Niger (today's Niger), British Nigeria (today's Nigeria), British Cameroons and French Cameroons (now belonging to Cameroon), French Chad (today's Chad) including the capital city Fort-Lamy, French Central Africa (today's Central African Republic), Sudan (part of the path of totality is now in South Sudan), Ethiopia, and the Trust Territory of Somaliland (today's Somalia). A partial eclipse was visible for parts of eastern North America, the eastern Caribbean, Europe, Africa, West Asia, and Central Asia.
Remove ads
Observations
Totality began over Boston, Massachusetts at sunrise. Viewing the eclipse was rained out, but it was reported that the brightening of the sky after the eclipse was a startling and impressive sight.[3] A few photographers captured the eclipse from airplanes above the clouds, and a multiple exposure was made atop the R. C. A. building in New York City.[4] The next total eclipse over Boston, the solar eclipse of May 1, 2079, will also be a sunrise event.[5]
The event was also observed at the Canarian Island of Fuerteventura by a team of Dutch astronomers of the university of Utrecht and Amsterdam.[6][7]
Maurice Allais, a French polymath, reported the alleged anomalous behavior of pendulums or gravimeters, later named as Allais effect. He first reported the effect after observing the solar eclipse of June 30, 1954, and reported another observation of the effect during this solar eclipse using the paraconical pendulum he invented.[8]
Remove ads
Eclipse details
Summarize
Perspective
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[9]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipses
Eclipses in 1959
- A partial lunar eclipse on March 24.
- An annular solar eclipse on April 8.
- A penumbral lunar eclipse on September 17.
- A total solar eclipse on October 2.
Metonic
- Preceded by: Solar eclipse of December 14, 1955
- Followed by: Solar eclipse of July 20, 1963
Tzolkinex
- Preceded by: Solar eclipse of August 20, 1952
- Followed by: Solar eclipse of November 12, 1966
Half-Saros
- Preceded by: Lunar eclipse of September 26, 1950
- Followed by: Lunar eclipse of October 6, 1968
Tritos
- Preceded by: Solar eclipse of November 1, 1948
- Followed by: Solar eclipse of August 31, 1970
Solar Saros 143
- Preceded by: Solar eclipse of September 21, 1941
- Followed by: Solar eclipse of October 12, 1977
Inex
- Preceded by: Solar eclipse of October 21, 1930
- Followed by: Solar eclipse of September 11, 1988
Triad
- Preceded by: Solar eclipse of November 30, 1872
- Followed by: Solar eclipse of August 2, 2046
Solar eclipses of 1957–1960
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[10]
Saros 143
This eclipse is a part of Saros series 143, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 7, 1617. It contains total eclipses from June 24, 1797 through October 24, 1995; hybrid eclipses from November 3, 2013 through December 6, 2067; and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2897. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 16 at 3 minutes, 50 seconds on August 19, 1887, and the longest duration of annularity will be produced by member 51 at 4 minutes, 54 seconds on September 6, 2518. All eclipses in this series occur at the Moon’s ascending node of orbit.[11]
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
The partial solar eclipses on December 18, 2188 (part of Saros 164) and November 18, 2199 (part of Saros 165) are also a part of this series but are not included in the table below.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
See also
Notes
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads