Top Qs
Timeline
Chat
Perspective
Solar eclipse of March 6, 1905
20th-century annular solar eclipse From Wikipedia, the free encyclopedia
Remove ads
An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, March 6, 1905,[1][2][3] with a magnitude of 0.9269. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.1 days before apogee (on March 8, 1905, at 7:00 UTC), the Moon's apparent diameter was smaller.[4]
Annularity was visible from Heard Island and McDonald Islands (now an Australian external territory), Australia, New Caledonia, and New Hebrides (now Vanuatu). A partial eclipse was visible for parts of Madagascar, Antarctica, Australia, and Oceania.
Remove ads
Eclipse details
Summarize
Perspective
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[5]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Remove ads
Related eclipses
Eclipses in 1905
- A partial lunar eclipse on February 19.
- An annular solar eclipse on March 6.
- A partial lunar eclipse on August 15.
- A total solar eclipse on August 30.
Metonic
- Preceded by: Solar eclipse of May 18, 1901
- Followed by: Solar eclipse of December 23, 1908
Tzolkinex
- Preceded by: Solar eclipse of January 22, 1898
- Followed by: Solar eclipse of April 17, 1912
Half-Saros
- Preceded by: Lunar eclipse of February 28, 1896
- Followed by: Lunar eclipse of March 12, 1914
Tritos
- Preceded by: Solar eclipse of April 6, 1894
- Followed by: Solar eclipse of February 3, 1916
Solar Saros 138
- Preceded by: Solar eclipse of February 22, 1887
- Followed by: Solar eclipse of March 17, 1923
Inex
- Preceded by: Solar eclipse of March 25, 1876
- Followed by: Solar eclipse of February 14, 1934
Triad
- Preceded by: Solar eclipse of May 5, 1818
- Followed by: Solar eclipse of January 4, 1992
Solar eclipses of 1902–1906
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[6]
The partial solar eclipses on May 7, 1902 and October 31, 1902 occur in the previous lunar year eclipse set, and the partial solar eclipse on July 21, 1906 occurs in the next lunar year eclipse set.
Saros 138
This eclipse is a part of Saros series 138, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on June 6, 1472. It contains annular eclipses from August 31, 1598 through February 18, 2482; a hybrid eclipse on March 1, 2500; and total eclipses from March 12, 2518 through April 3, 2554. The series ends at member 70 as a partial eclipse on July 11, 2716. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 23 at 8 minutes, 2 seconds on February 11, 1869, and the longest duration of totality will be produced by member 61 at 56 seconds on April 3, 2554. All eclipses in this series occur at the Moon’s descending node of orbit.[7]
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
The partial solar eclipses on December 18, 2188 (part of Saros 164) and November 18, 2199 (part of Saros 165) are also a part of this series but are not included in the table below.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
Notes
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads