Symmetrohedron

High-symmetry polyhedron From Wikipedia, the free encyclopedia

Symmetrohedron

In geometry, a symmetrohedron is a high-symmetry polyhedron containing convex regular polygons on symmetry axes with gaps on the convex hull filled by irregular polygons. The name was coined by Craig S. Kaplan and George W. Hart.[1]

Thumb
The symmetrohedron I(*;2;3;e) has regular pentagons and hexagons, and trapezoidal gap faces.
Thumb
A pentahexagonal symmetrohedron with pyritohedral symmetry, order 24

The trivial cases are the Platonic solids, Archimedean solids with all regular polygons. A first class is called bowtie which contain pairs of trapezoidal faces. A second class has kite faces. Another class are called LCM symmetrohedra.

Symbolic notation

Each symmetrohedron is described by a symbolic expression G(l; m; n; α). G represents the symmetry group (T,O,I). The values l, m and n are the multipliers ; a multiplier of m will cause a regular km-gon to be placed at every k-fold axis of G. In the notation, the axis degrees are assumed to be sorted in descending order, 5,3,2 for I, 4,3,2 for O, and 3,3,2 for T . We also allow two special values for the multipliers: *, indicating that no polygons should be placed on the given axes, and 0, indicating that the final solid must have a vertex (a zero-sided polygon) on the axes. We require that one or two of l, m, and n be positive integers. The final parameter, α, controls the relative sizes of the non-degenerate axis-gons.

Conway polyhedron notation is another way to describe these polyhedra, starting with a regular form, and applying prefix operators. The notation doesn't imply which faces should be made regular beyond the uniform solutions of the Archimedean solids.

More information I(*;2;3;e), Pyritohedral ...
Duals
I(*;2;3;e) Pyritohedral
Close

1-generator point

Summarize
Perspective

These symmetrohedra are produced by a single generator point within a fundamental domains, reflective symmetry across domain boundaries. Edges exist perpendicular to each triangle boundary, and regular faces exist centered on each of the 3 triangle corners.

The symmetrohedra can be extended to euclidean tilings, using the symmetry of the regular square tiling, and dual pairs of triangular and hexagonal tilings. Tilings, Q is square symmetry p4m, H is hexagonal symmetry p6m.

Coxeter-Dynkin diagrams exist for these uniform polyhedron solutions, representing the position of the generator point within the fundamental domain. Each node represents one of 3 mirrors on the edge of the triangle. A mirror node is ringed if the generator point is active, off the mirror, and creates new edges between the point and its mirror image.

More information Domain, Edges ...
Domain Edges Tetrahedral (3 3 2) Octahedral (4 3 2) Icosahedral (5 3 2) Triangular (6 3 2) Square (4 4 2)
SymbolImageSymbolImageSymbolImageSymbolImage DualSymbolImage Dual
Thumb1 T(1;*;*;e)
T,
C, O(1;*;*;e)
I(1;*;*;e)
D,
H(1;*;*;e)
H,
Q(1;*;*;e)
Q,
Thumb1 T(*;1;*;e)
dT,
O(*;1;*;e)
O,
I(*;1;*;e)
I,
H(*;1;*;e)
dH,
Q(*;1;*;e)
dQ,
Thumb2 T(1;1;*;e)
aT,
O(1;1;*;e)
aC,
I(1;1;*;e)
aD,
H(1;1;*;e)
aH,
Q(1;1;*;e)
aQ,
Thumb3 T(2;1;*;e)
tT,
O(2;1;*;e)
tC,
I(2;1;*;e)
tD,
H(2;1;*;e)
tH,
Q(2;1;*;e)
tQ,
Thumb3 T(1;2;*;e)
dtT,
O(1;2;*;e)
tO,
I(1;2;*;e)
tI,
H(1;2;*;e)
dtH,
Q(1;2;*;e)
dtQ,
Thumb4 T(1;1;*;1)
eT,
O(1;1;*;1)
eC,
I(1;1;*;1)
eD,
H(1;1;*;1)
eH,
Q(1;1;*;1)
eQ,
Thumb6 T(2;2;*;e)
bT,
O(2;2;*;e)
bC,
I(2;2;*;e)
bD,
H(2;2;*;e)
bH,
Q(2;2;*;e)
bQ,
Close

2-generator points

Summarize
Perspective
More information Domain, Edges ...
Domain Edges Tetrahedral (3 3 2) Octahedral (4 3 2) Icosahedral (5 3 2) Triangular (6 3 2) Square (4 4 2)
SymbolImageSymbolImageSymbolImageSymbolImage DualSymbolImage Dual
Thumb6 T(1;2;*;[2])
atT
O(1;2;*;[2])
atO
I(1;2;*;[2])
atI
H(1;2;*;[2])
atΔ
Thumb Thumb Q(1;2;*;[2])
Q(2;1;*;[2])
atQ
Thumb Thumb
Thumb6 O(2;1;*;[2])
atC
I(2;1;*;[2])
atD
H(2;1;*;[2])
atH
Thumb Thumb
Thumb7 T(3;*;*;[2])
T(*;3;*;[2])
dKdT
O(3;*;*;[2])
dKdC
I(3;*;*;[2])
dKdD
H(3;*;*;[2])
dKdH
Thumb Thumb Q(3;*;*;[2])
Q(*;3;*;[2])
dKQ
Thumb Thumb
Thumb7 O(*;3;*;[2])
dKdO
I(*;3;*;[2])
dKdI
H(*;3;*;[2])
dKdΔ
Thumb Thumb
Thumb8 T(2;3;*;α)
T(3;2;*;α)
dM0T
O(2;3;*;α)
dM0dO
I(2;3;*;α)
dM0dI
H(2;3;*;α)
dM0
Thumb Thumb Q(2;3;*;α)
Q(3;2;*;α)
dM0Q
Thumb Thumb
Thumb8 O(3;2;*;α)
dM0dC
I(3;2;*;α)
dM0dD
H(3;2;*;α)
dM0dH
Thumb Thumb
Thumb9 T(2;4;*;e)
T(4;2;*;e)
ttT
O(2;4;*;e)
ttO
I(2;4;*;e)
ttI
H(2;4;*;e)
ttΔ
Thumb Thumb Q(4;2;*;e)
Q(2;4;*;e)
ttQ
Thumb Thumb
Thumb9 O(4;2;*;e)
ttC
I(4;2;*;e)
ttD
H(4;2;*;e)
ttH
Thumb Thumb
Thumb7 T(2;1;*;1)
T(1;2;*;1)
dM3T
O(1;2;*;1)
dM3O
I(1;2;*;1)
dM3I
H(1;2;*;1)
dM3Δ
Thumb Thumb Q(2;1;*;1)
Q(1;2;*;1)
dM3dQ
Thumb Thumb
Thumb7 O(2;1;*;1)
dM3C
I(2;1;*;1)
dM3D
H(2;1;*;1)
dM3H
Thumb Thumb
Thumb9 T(2;3;*;e)
T(3;2;*;e)
dm3T
O(2;3;*;e)
dm3C
I(2;3;*;e)
dm3D
H(2;3;*;e)
dm3H
Thumb Thumb Q(2;3;*;e)
Q(3;2;*;e)
dm3Q
Thumb Thumb
Thumb9 O(3;2;*;e)
dm3O
I(3;2;*;e)
dm3I
H(3;2;*;e)
dm3Δ
Thumb Thumb
Thumb10 T(2;*;3;e)
T(*;2;3;e)
dXdT

3.4.6.6

O(*;2;3;e)
dXdO
I(*;2;3;e)
dXdI
H(*;2;3;e)
dXdΔ
Thumb Thumb Q(2;*;3;e)
Q(*;2;3;e)
dXdQ
Thumb Thumb
Thumb10 O(2;*;3;e)
dXdC

3.4.6.8

I(2;*;3;e)
dXdD

3.4.6.10

H(2;*;3;e)
dXdH

3.4.6.12

Thumb Thumb
Close

3-generator points

More information Domain, Edges ...
Domain Edges Tetrahedral (3 3 2) Octahedral (4 3 2) Icosahedral (5 3 2) Triangular (6 3 2) Square (4 4 2)
SymbolImageSymbolImageSymbolImageSymbolImage DualSymbolImage Dual
Thumb6 T(2;0;*;[1])Thumb O(0;2;*;[1])
dL0dO
Thumb I(0;2;*;[1])
dL0dI
Thumb H(0;2;*;[1])
dL0H
Thumb Thumb Q(2;0;*;[1])
Q(0;2;*;[1])
dL0dQ
Thumb Thumb
Thumb6 O(2;0;*;[1])
dL0dC
Thumb I(2;0;*;[1])
dL0dD
Thumb H(2;0;*;[1])
dL0Δ
Thumb Thumb
Thumb7 T(3;0;*;[2])Thumb O(0;3;*;[2])
dLdO
Thumb I(0;3;*;[2])
dLdI
Thumb H(0;3;*;[2])
dLH
Thumb Thumb Q(2;0;*;[1])
Q(0;2;*;[2])
dLQ
Thumb Thumb
Thumb7 O(3;0;*;[2])
dLdC
Thumb I(3;0;*;[2])
dLdD
Thumb H(3;0;*;[2])
dLΔ
Thumb Thumb
Thumb12 T(2;2;*;a)
amT
Thumb O(2;2;*;a)
amC
Thumb I(2;2;*;a)
amD
Thumb H(2;2;*;a)
amH
Thumb Thumb Q(2;2;*;a)
amQ
Thumb Thumb
Close

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.