Loading AI tools
Cryptographic protocols for securing data in transit From Wikipedia, the free encyclopedia
Transport Layer Security (TLS) is a cryptographic protocol designed to provide communications security over a computer network, such as the Internet. The protocol is widely used in applications such as email, instant messaging, and voice over IP, but its use in securing HTTPS remains the most publicly visible.
The TLS protocol aims primarily to provide security, including privacy (confidentiality), integrity, and authenticity through the use of cryptography, such as the use of certificates, between two or more communicating computer applications. It runs in the presentation layer and is itself composed of two layers: the TLS record and the TLS handshake protocols.
The closely related Datagram Transport Layer Security (DTLS) is a communications protocol that provides security to datagram-based applications. In technical writing, references to "(D)TLS" are often seen when it applies to both versions.[1]
TLS is a proposed Internet Engineering Task Force (IETF) standard, first defined in 1999, and the current version is TLS 1.3, defined in August 2018. TLS builds on the now-deprecated SSL (Secure Sockets Layer) specifications (1994, 1995, 1996) developed by Netscape Communications for adding the HTTPS protocol to their Netscape Navigator web browser.
Client-server applications use the TLS protocol to communicate across a network in a way designed to prevent eavesdropping and tampering.
Since applications can communicate either with or without TLS (or SSL), it is necessary for the client to request that the server set up a TLS connection.[2] One of the main ways of achieving this is to use a different port number for TLS connections. Port 80 is typically used for unencrypted HTTP traffic while port 443 is the common port used for encrypted HTTPS traffic. Another mechanism is to make a protocol-specific STARTTLS request to the server to switch the connection to TLS – for example, when using the mail and news protocols.
Once the client and server have agreed to use TLS, they negotiate a stateful connection by using a handshaking procedure (see § TLS handshake).[3] The protocols use a handshake with an asymmetric cipher to establish not only cipher settings but also a session-specific shared key with which further communication is encrypted using a symmetric cipher. During this handshake, the client and server agree on various parameters used to establish the connection's security:
This concludes the handshake and begins the secured connection, which is encrypted and decrypted with the session key until the connection closes. If any one of the above steps fails, then the TLS handshake fails and the connection is not created.
TLS and SSL do not fit neatly into any single layer of the OSI model or the TCP/IP model.[4][5] TLS runs "on top of some reliable transport protocol (e.g., TCP),"[6]: §1 which would imply that it is above the transport layer. It serves encryption to higher layers, which is normally the function of the presentation layer. However, applications generally use TLS as if it were a transport layer,[4][5] even though applications using TLS must actively control initiating TLS handshakes and handling of exchanged authentication certificates.[6]: §1
When secured by TLS, connections between a client (e.g., a web browser) and a server (e.g., wikipedia.org) will have all of the following properties:[6]: §1
TLS supports many different methods for exchanging keys, encrypting data, and authenticating message integrity. As a result, secure configuration of TLS involves many configurable parameters, and not all choices provide all of the privacy-related properties described in the list above (see the tables below § Key exchange, § Cipher security, and § Data integrity).
Attempts have been made to subvert aspects of the communications security that TLS seeks to provide, and the protocol has been revised several times to address these security threats. Developers of web browsers have repeatedly revised their products to defend against potential security weaknesses after these were discovered (see TLS/SSL support history of web browsers).
Datagram Transport Layer Security, abbreviated DTLS, is a related communications protocol providing security to datagram-based applications by allowing them to communicate in a way designed[7][8] to prevent eavesdropping, tampering, or message forgery. The DTLS protocol is based on the stream-oriented Transport Layer Security (TLS) protocol and is intended to provide similar security guarantees. However, unlike TLS, it can be used with most datagram oriented protocols including User Datagram Protocol (UDP), Datagram Congestion Control Protocol (DCCP), Control And Provisioning of Wireless Access Points (CAPWAP), Stream Control Transmission Protocol (SCTP) encapsulation, and Secure Real-time Transport Protocol (SRTP).
As the DTLS protocol datagram preserves the semantics of the underlying transport—the application it does not suffer from the delays associated with stream protocols, however the application has to deal with packet reordering, loss of datagram and data larger than the size of a datagram network packet. Because DTLS uses UDP or SCTP rather than TCP, it avoids the TCP meltdown problem,[9][10] when being used to create a VPN tunnel.
The original 2006 release of DTLS version 1.0 was not a standalone document. It was given as a series of deltas to TLS 1.1.[11] Similarly the follow-up 2012 release of DTLS is a delta to TLS 1.2. It was given the version number of DTLS 1.2 to match its TLS version. Lastly, the 2022 DTLS 1.3 is a delta to TLS 1.3. Like the two previous versions, DTLS 1.3 is intended to provide "equivalent security guarantees [to TLS 1.3] with the exception of order protection/non-replayability".[12]
Many VPN clients including Cisco AnyConnect[13] & InterCloud Fabric,[14] OpenConnect,[15] ZScaler tunnel,[16] F5 Networks Edge VPN Client,[17] and Citrix Systems NetScaler[18] use DTLS to secure UDP traffic. In addition all modern web browsers support DTLS-SRTP[19] for WebRTC.
Protocol | Published | Status |
---|---|---|
SSL 1.0 | Unpublished | Unpublished |
SSL 2.0 | 1995 | Deprecated in 2011 (RFC 6176) |
SSL 3.0 | 1996 | Deprecated in 2015 (RFC 7568) |
TLS 1.0 | 1999 | Deprecated in 2021 (RFC 8996)[20][21][22] |
TLS 1.1 | 2006 | Deprecated in 2021 (RFC 8996)[20][21][22] |
TLS 1.2 | 2008 | In use since 2008[23][24] |
TLS 1.3 | 2018 | In use since 2018[24][25] |
The Transport Layer Security Protocol (TLS), together with several other basic network security platforms, was developed through a joint initiative begun in August 1986, among the National Security Agency, the National Bureau of Standards, the Defense Communications Agency, and twelve communications and computer corporations who initiated a special project called the Secure Data Network System (SDNS).[26] The program was described in September 1987 at the 10th National Computer Security Conference in an extensive set of published papers.
The innovative research program focused on designing the next generation of secure computer communications network and product specifications to be implemented for applications on public and private internets. It was intended to complement the rapidly emerging new OSI internet standards moving forward both in the U.S. government's GOSIP Profiles and in the huge ITU-ISO JTC1 internet effort internationally. Originally known as the SP4 protocol, it was renamed TLS and subsequently published in 1995 as international standard ITU-T X.274|ISO/IEC 10736:1995.
Early research efforts towards transport layer security included the Secure Network Programming (SNP) application programming interface (API), which in 1993 explored the approach of having a secure transport layer API closely resembling Berkeley sockets, to facilitate retrofitting pre-existing network applications with security measures. SNP was published and presented in the 1994 USENIX Summer Technical Conference.[27][28] The SNP project was funded by a grant from NSA to Professor Simon Lam at UT-Austin in 1991.[29] Secure Network Programming won the 2004 ACM Software System Award.[30][31] Simon Lam was inducted into the Internet Hall of Fame for "inventing secure sockets and implementing the first secure sockets layer, named SNP, in 1993."[32][33]
Netscape developed the original SSL protocols, and Taher Elgamal, chief scientist at Netscape Communications from 1995 to 1998, has been described as the "father of SSL".[34][35][36][37]