For faster navigation, this Iframe is preloading the Wikiwand page for Inversa hiperbola funkcio.

Inversa hiperbola funkcio

El Vikipedio, la libera enciklopedio

En matematiko, inversaj hiperbolaj funkcioj estas retroĵetoj de hiperbolaj funkcioj.

Hiperbola funkcio Inversa hiperbola funkcio
Nomo Skribmaniero Difino Nomo Skribmaniero
Hiperbola sinuso y=sinh xy=sh x Inversa hiperbola sinuso u=arcsinh vu=arsinh vu=asinh vu=arsh v
Hiperbola kosinuso y=cosh xy=ch x Inversa hiperbola kosinuso u=arccosh vu=arcosh vu=acosh vu=arch v
Hiperbola tangento y=tanh xth x Inversa hiperbola tangento u=arctanh vu=artanh vu=atanh v
Hiperbola kotangento y=coth xcth x Inversa hiperbola kotangento u=arccoth vu=arcoth vu=acoth v
Hiperbola sekanto y=sech x Inversa hiperbola sekanto u=arcsech vu=arsech vu=asech v
Hiperbola kosekanto y=csch Inversa hiperbola kosekanto u=arccsch vu=arcsch vu=acsch v
Arcsinh function.png

arsinh x
Arccosh function.png

arcosh x
Area tangent.svg

artanh x
Arccoth function.png

arcoth x
Arcsech.png

arsech x
Inverse Hyperbolic Cosecant.svg

arcsch x
Radio tra la fonto tranĉas la hiperbolo x2-y2 = 1 en la punkto (cosh a, sinh a), kie a estas la areo inter la radio, ĝia spegula bildo kun respekto al la x-akso, kaj la hiperbolo
Radio tra la fonto tranĉas la hiperbolo x2-y2 = 1 en la punkto (cosh a, sinh a), kie a estas la areo inter la radio, ĝia spegula bildo kun respekto al la x-akso, kaj la hiperbolo

Ili estas nomataj ankaŭ kiel areaj hiperbolaj funkcioj, ĉar ili komputas areon de sektoro de la unua hiperbolo x2-y2 = 1, simile al tio kiel inversaj trigonometriaj funkcioj komputas longon de arko de la unuobla cirklo x2+y2 = 1.

La kutimaj simboloj por ili (ekzemple por hiperbola sinuso) estas kiel arsinh, arcsinhasinh (en komputiko). Ankaŭ skribmaniero kiel sinh−1 (x) estas uzata. La simboloj komenciĝantaj de "arc" (arcsinh, ...) estas kutime uzita, sed fakte ili estas misnomaĵoj ĉar la prefikso "arc" devenas de vorto arko analoge al inversaj trigonometriaj funkcioj, sed inversaj hiperbolaj funkcioj ne kalkulas arkon. La prefikso "ar" devenas de vorto areo kaj respektivas la realan kalkuladon.

Sur reelaj nombroj, nur sinh, tanh, coth kaj csch permesas retroĵetadon kun certa ricevo de la originala valoro (tiel por ĉiu reela x, ekzemple arsinh (sinh x)=x). cosh kaj sech prenas (sur reela domajno) preskaŭ ĉiun eblan valoron je du malsamaj argumentoj, sed la ĉefa valoro de inversa funkcio redonas nur unuon el la du eblaj variantoj.

Pro tio ke ĉiuj hiperbolaj funkcioj estas periodaj kun kompleksa periodo 2πi (πi por hiperbola tangento kaj hiperbola kotangento), apliko de la inversa funkcio kun preno de la ĉefa valoro (vidu sube) ne ĉiam donas la originalan valoron. Tiel la inversaj funkcioj estas multvaloraj funkcioj

Logaritma prezento

La funkcioj estas difinita en la kompleksa ebeno per esprimoj kun logaritmoj kiel:

De la kvadrataj radikoj estas prenetaj la ĉefaj valoroj. Por reelaj argumentoj kaj redonaj valoroj, certaj plisimpligoj povas esti faritaj, ekzemple , kio ne estas ĝenerale vera tra kompleksaj x.

Complex ArcSinh.jpg

arsinh z
Complex ArcTanh.jpg

artanh z
Complex ArcSech.jpg

arsech z
Complex ArcCosh.jpg

arcosh z
Complex ArcCoth.jpg

arcoth z
Complex ArcCsch.jpg

arcsch z

Serioj

Seriaj elvolvaĵoj por la funkcioj estas:

Asimptota elvolvaĵo por arsinh x estas

Derivaĵoj

Por reela x eblas plisimpligi la esprimojn:

Ekzemplo de pruvo: estu θ = arsinh x, do:

Vidu ankaŭ

Eksteraj ligiloj

{{bottomLinkPreText}} {{bottomLinkText}}
Inversa hiperbola funkcio
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.