Analyse dimensionnelle
étude des significations physiques de grandeurs / De Wikipedia, l'encyclopédie libre
Cher Wikiwand IA, Faisons court en répondant simplement à ces questions clés :
Pouvez-vous énumérer les principaux faits et statistiques sur Analyse dimensionnelle?
Résumez cet article pour un enfant de 10 ans
L'analyse dimensionnelle est une méthode pratique permettant de vérifier l'homogénéité d'une formule physique à travers ses équations aux dimensions, c'est-à-dire la décomposition des grandeurs physiques qu'elle met en jeu en un produit de grandeurs de base : longueur, durée, masse, intensité électrique, etc., irréductibles les unes aux autres.

L'analyse dimensionnelle repose sur le fait qu'on ne peut comparer ou ajouter que des grandeurs ayant la même dimension ; on peut ajouter une longueur à une autre, mais on ne peut pas dire qu'elle est supérieure, ou inférieure, à une masse. Intuitivement, une loi physique ne saurait changer, hormis dans la valeur numérique de ses constantes, au simple motif qu'on l'exprime dans d'autres unités. Le théorème de Vaschy-Buckingham le démontre mathématiquement.
En physique fondamentale, l'analyse dimensionnelle permet de déterminer a priori la forme d'une équation à partir d'hypothèses sur les grandeurs qui gouvernent l'état d'un système physique, avant qu'une théorie plus complète ne valide ces hypothèses. En science appliquée, elle est à la base de la modélisation par maquettes et de l'étude des effets d'échelle.