Top Qs
Chronologie
Chat
Contexte

Fonction polylogarithme

catégorie de fonction spéciale en mathématiques De Wikipédia, l'encyclopédie libre

Fonction polylogarithme
Remove ads

La fonction polylogarithme (aussi connue sous le nom de fonction de Jonquière) est une fonction spéciale qui peut être définie pour tout s et |z| < 1 par :

Le paramètre s et l'argument z sont pris sur l'ensemble ℂ des nombres complexes. Les cas particuliers s = 2 et s = 3 sont appelés le polylogarithme d'ordre 2 ou dilogarithme et le polylogarithme d'ordre 3 ou trilogarithme respectivement. Le polylogarithme apparaît aussi dans la forme fermée de l'intégrale de la distribution de Fermi-Dirac et la distribution de Bose-Einstein et est quelquefois connue comme l'intégrale de Fermi-Dirac ou l'intégrale de Bose-Einstein.

Par prolongement analytique, on peut également donner un sens au polylogarithme pour |z| ≥ 1.

Différentes fonctions polylogarithmes dans le plan complexe :
Thumb
Thumb
Thumb
Thumb
Thumb
Thumb
Thumb
Li–3(z) Li–2(z) Li–1(z) Li0(z) Li1(z) Li2(z) Li3(z)
Remove ads

Propriétés

Résumé
Contexte

Dans le cas important où le paramètre s est un nombre entier, il sera représenté par n (ou –n lorsqu'il est négatif). Il est souvent pratique de définir μ = ln(z)ln est la branche principale du logarithme naturel, c’est-à-dire . Ainsi, toute l'exponentiation sera supposée être à valeur unique. (e.g. zs = es ln(z)).

Dépendant du paramètre s, le polylogarithme peut être à valeurs multiples. La branche principale du polylogarithme est celle pour laquelle Lis(z) est réel pour z réel, 0 ≤ z ≤ 1 et est continu excepté sur l'axe des réels positifs, où une coupure est faite de z = 1 à l'infini telle que la coupure place l'axe réel sur le demi-plan le plus bas de z. En termes de μ, ceci s'élève à –π < arg(–μ) < π. Le fait que le polylogarithme puisse être discontinu en μ peut causer une certaine confusion.

Pour z réel et supérieur ou égal à 1, la partie imaginaire du polylogarithme est (Wood 1992) :

En traversant la coupure :

Les dérivées du polylogarithme s'expriment également avec le polylogarithme :

Remove ads

Valeurs particulières

Résumé
Contexte
Thumb

Voir aussi la section « Relation de parenté avec les autres fonctions » ci-dessous.

Pour les valeurs entières de s, on peut écrire les expressions explicites suivantes :

Le polylogarithme, pour toutes les valeurs entières négatives de s, peut être exprimé comme une fraction rationnelle en z (voir les représentations en série ci-dessus). Certaines expressions particulières pour les demi valeurs entières de l'argument sont :

est la fonction zêta de Riemann. De plus, on a :

est la fonction bêta de Dirichlet.

Aucune formule similaire de ce type n'est connue pour des ordres plus élevés (Lewin 1991, p. 2) ; par ailleurs, les seules valeurs connues de Li2 exprimables à l'aide des fonctions élémentaires sont les huit valeurs suivantes[1] :

ainsi que

 ;
.
Remove ads

Expressions alternatives

Celle-ci converge pour et tous les z excepté pour les z réels et supérieurs ou égaux à 1. Le polylogarithme dans ce contexte est quelquefois connu comme l'intégrale de Bose ou de Bose-Einstein.
Celle-ci converge pour et tous les z excepté pour les z réels et strictement inférieurs à –1. Le polylogarithme dans ce contexte est quelquefois connu comme l'intégrale de Fermi ou l'intégrale de Fermi-Dirac. (GNU)
  • On a aussi la relation :
est un entier naturel non nul, sont des complexes et
  • Le polylogarithme peut plutôt être généralement représenté par une intégrale sur un contour de Hankel (en) (Whittaker et Watson 1927).
    • Tant que le pôle t = μ de l'intégrande n'est pas relié à l'axe réel positif, et , on a :
      H représente le contour de Hankel. L'intégrande possède une coupure le long de l'axe réel de zéro à l'infini, l'axe réel étant sur la moitié inférieure de la feuille ().
    • Pour le cas où μ est réel et positif, nous pouvons simplement ajouter la contribution limitante du pôle :
      R est le résidu du pôle :
  • La relation carrée est facilement vue à partir de l'équation (voir aussi Clunie 1954 et Schrödinger 1952)
La fonction de Kummer obéit à une formule de duplication très similaire.
Remove ads

Relation de parenté avec les autres fonctions

η(s) est la fonction êta de Dirichlet.
Pour des arguments imaginaires purs, nous avons :
β(s) est la fonction bêta de Dirichlet.
  • Le polylogarithme est équivalent à l'intégrale de Fermi-Dirac (GNU)
Γ(s) est la fonction Gamma d'Euler. Ceci est valable pour

et aussi pour

(l'équation équivalente d'Erdélyi et al. 1981, § 1.11-16 n'est pas correcte si on suppose que les branches principales du polylogarithme et le logarithme sont utilisés simultanément).
Cette équation fournit le prolongement analytique de la représentation en série du polylogarithme au-delà de son cercle de convergence |z| = 1.
qui reste valable pour tous les x réels et n entier positif, il peut être remarqué que :
sous les mêmes contraintes sur s et x que ci-dessus. (L'équation correspondante d'Erdélyi et al. 1981, § 1.11-18 n'est pas correcte). Pour les valeurs entières négatives du paramètre, on a pour tous les z (Erdélyi et al. 1981, § 1.11-17) :
Une expression remarquablement similaire relie la fonction de Debye au polylogarithme :
Remove ads

Représentations en séries

Résumé
Contexte

On peut représenter le polylogarithme comme une série de puissances pour μ = 0 comme suit (Robinson 1951). On considère la transformation de Mellin :

Le changement de variables t = ab, u = a(1 – b) permet à l'intégrale d'être séparée :

pour f = 1 on a, à travers la transformation inverse de Mellin :

c est une constante à droite des pôles de l'intégrande.

Le chemin d'intégration peut être converti en un contour fermé, et les pôles de l'intégrande sont ceux de Γ(r) à r = 0 , –1, –2, … et de ζ(s + r) à r = 1 – s. Sommer les résidus donne, pour et

Si le paramètre s est un entier positif n, ainsi que le k = n – 1e terme, la fonction gamma devient infinie, bien que leur somme ne l'est pas. Pour un entier k > 0, on a :

et pour k = 0 :

Ainsi, pour s = nn est un entier positif et , on a :

Hn–1 est un nombre harmonique :

Le problème des termes contient maintenant –ln(–μ) qui, lorsqu'ils sont multipliés par μk, tendront vers zéro quand μ tend vers zéro, excepté pour k = 0. Ceci reflète le fait qu'il existe une vraie singularité logarithmique en Lis(z) en s = 1 et z = 1, puisque :

En utilisant la parenté entre la fonction zêta de Riemann et les nombres de Bernoulli Bk

on obtient pour les valeurs entières négatives de s et  :

puisque, excepté pour B1, tous les nombres de Bernoulli impairs sont égaux à zéro. On obtient le terme n = 0 en utilisant . Encore, l'équation équivalent d'Erdélyi et al. 1981, § 1.11-15 n'est pas correcte si on suppose que les branches principales du polylogarithme et le logarithme sont utilisées simultanément, puisque n'est pas uniformément égal à –ln(z).

L'équation définie peut être étendue aux valeurs négatives du paramètre s en utilisant une intégrale sur un contour de Hankel (en) (Wood 1992 et Gradshteyn et Ryzhik 1980) :

H est le contour de Hankel qui peut être modifié pour qu'il entoure les pôles de l'intégrande, à t – μ = 2k, l'intégrale peut être évaluée comme la somme des résidus :

Ceci restera valable pour et tous les z excepté pour z = 1.

Pour les entiers négatifs s, le polylogarithme peut être exprimé comme une série impliquent les nombres eulériens

sont les nombres eulériens.

Une autre formule explicite pour les entiers négatifs s est (Wood 1992) :

S(n , k) sont les nombres de Stirling de deuxième espèce.

Remove ads

Comportement aux limites

Résumé
Contexte

Les limites suivantes restent valables pour le polylogarithme (Wood 1992) :

Remove ads

Échelles de polylogarithmes

Résumé
Contexte

Leonard Lewin a découvert une remarquable généralisation d'un grand nombre de relations classiques sur les polylogarithmes pour des valeurs particulières. En effet, on peut prouver par dérivation les relation suivantes pour le dilogarithme :

(Euler)
(Landen)

En particulier, pour , on peut déduire :

De même, pour le trilogarithme, on a :

(Landen)

dont on peut déduire :

Les échelles de polylogarithmes apparaissent naturellement et profondément en K-théorie.

Remove ads

Notes et références

Bibliographie

Liens externes

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads