Canle de potasio

From Wikipedia, the free encyclopedia

Canle de potasio
Remove ads

As canles de potasio son o tipo máis amplamente distribuído de canle iónica que se atopa en virtualmente todos os organismos.[1] Forman poros selectivos ao potasio que abranguen o grosor da membrana plasmática. As canles de potasio atópanse na maioría dos tipos de células e controlan unha ampla variedade de funcións celulares.[2][3]

Thumb
Canle de potasio Kv1.2, estrutura nun ambiente similar a unha membrana. Os límites dos hidrocarburos calculados na bicapa lipídica indícanse en liñas vermella e azul.
Remove ads

Función

A función das canles de potasio é conducir ións potasio ao seu través a favor de gradiente electroquímico, de faorma rápida (ata a velocidade de difusión de ións K+ nunha masa de auga) e selectiva (excluíndo, principalmente, o sodio malia a súa diferenza sub-ángstrom en raio iónico).[4] Bioloxicamente, estas cales actúan para establecer ou restablecer o potencial de repouso en moitas células. En células excitables, como as neuronas, o contrafluxo atrasado de ións potasio dá forma ao potencial de acción.

Como contribúen á regulación da duración do potencial de acción cardíaco no músculo cardíaco, o funcionamento incorreco das canles de potasio pode causar arritmias que poden ser mortais. As canles de potasio poden tamén estar implicadas no mantemento do ton vascular.

Tamén regulan procesos celulares como a secreción de hormonas (por exemplo, a insulina liberada polas células beta do páncreas), así que o seu mal funcionamento pode orixinar doenzas, como a diabetes.

Algunhas toxinas, como a dendrotoxina, deben a súa potencia a que bloquean as canles de potasio.[5]

Remove ads

Tipos

Hai catro grandes calses de canles de potasio:

  • Canle de potasio activada por calcio, que se abre en resposta á presenza de ións calcio ou outras moléculas de sinalización.
  • Canle de ión potasio rectificadora interna, que pasa corrente (de cargas positivas) máis facilmente na dirección cara ao interior da célula.
  • Canle de potasio de dominio de poro en tándem, que está aberta constitutivmente (permanentemente) ou posúe unha alta activación basal, como as "canles de potasio en repouso" ou as "canles de fuga" que establecen o potencial de membrana negativa das neuronas.
  • Canle de potasio dependente de voltaxe, que é unha canle iónica dependente de voltaxe que se abre ou pecha en resposta a cambios na voltaxe transmembrana.

A seguinte táboa contén unha comparación das grandes clases de canles de potasio con exemplos representativos (para unha lista completa de canles dentro de cada clase ver os artigos respectivos de cada clase).

Para máis exemplos de moduladores farmacolóxicos das canles de potasio ver bloqueante das canles de potasio e abridor das canles de potasio.

Máis información Clase, Subclases ...
Remove ads

Estrutura

Thumb
Vista superior dunha canle de potasio con ións potasio (púrpura) movéndose a través do poro (no centro). (PDB 1BL8)

As canles de potasio teñen unha estrutura tetrámera na cal se asocian catro subunidades proteicas idénticas para formar un complexo simétrico cuaternario (C4) disposto arredor dun poro central condutor de ións (é dicir, un homotetrámero). Alternativamente, catro subunidades proteicas relacionadas pero non idénticas poden asociarse para formar complexos heterotetrámeros con simetría pseudo-C4. Todas as subunidades das canles de potasio teñen unha estrutura de bucle-poro distintiva que tapiza a parte superior do poro e é responsable da permeabilidade selectiva para o potasio.

Hai uns 80 xenes de mamíferos que codifican as subunidades da canle de potasio. Porén, as canles de potasio atopadas en bacterias están entre as canles iónicas máis estudadas en canto á súa estrutura molecular. Usando cristalografía de raios X,[55][56] conseguise moita información de como pasan os ions de potasio a través destas canles e por que os ións sodio (que son máis pequenos) non pasan.[57] O Premio Nobel de Química de 2003 concedéuselle a Rod MacKinnon polo seu traballo pioneiro nesta área.[58]

Filtro de selectividade

Thumb
Estrutura cristalográfica da canle de potasio KcsA bacteriana (PDB 1K4C).[59] Nesta figura só están representadas dúas das catro subunidades do tetrámero para maior claridade. A proteína móstrase como un diagrama verde. Ademais móstranse os grupos carbonilo do esqueleto da molécula e os átomos da proteína da cadea lateral de treonina (oxíxeno = vermello, carbono = verde). Finalmente os ións potasio (que ocupan os sitios S2 e S4) e os átomos de oxíxeno de moléculas de auga (S1 e S3) represéntanse como esferas púrpura e vermellas, respectivamente.

As canles de ión potasio retiran a cuberta de hidratación (solvatación) do ión cando este entra no filtro de selectividade. O filtro de selectividade está formado por unha secuencia de cinco residuos, TVGYG, denominada secuencia sinatura, que se encontra en cada unha das catro subunidades. Esta secuencia de sinatura está dentro dun bucle entre a hélice do poro e o TM2/6, denominado historicamente bucle P. Esta secuencia sinatura está altamente conservada, coa excepción de que un residuo de valina presente en canles de potasio procariotas adoita estar substituído por un residuo de isoleucina nas canles eucariotas. Esta secuencia adopta unha estrutura de cadea principal única, estruturalmente análoga ao motivo estrutural de niño proteico. Os catro conxuntos de átomos de oxíxeno do carbonilo electronegativos están aliñados cara ao centro do poro filtro e forman un antiprisma cadrado similar ao da cuberta de auga solvatante que rodea a cada sitio de unión do potasio. A distancia entre os oxíxenos do carbonilo e os ións potasio nos sitios de unión do filtro de selectividade é a mesma que entre os oxíxenos da auga da primeira cuberta de hidratación e un ión potasio en solución acuosa, proporcionando unha ruta enerxeticamente favorable para a des-solvatación dos ións. Porén, os ións sodio son demasiado pequenos para encher o espazo entre os átomos do oxíxeno carbonilo. Así, é enerxeticamente favorable para os ións sodio permaneceren unidos a moléculas de auga no espazo extracelular, en vez de pasaren a través do poro iónico selectivo ao potaasio.[60] Esta anchura parce que se mantén pola formación de enlaces de hidróxeno e forzas de van der Waals entre unha lámina de residuos de aminoácidos aromáticos que rodean o filtro de selectividade.[55][61] O filtro de selectividade ábrese cara a solución extracelular, expoñendo catro oxíxenos do carbonilo nun residuo de glicina (Gly79 na canle KcsA). O seguinte residuo cara ao lado extracelular da proteína é o Asp80 (KcsA) cargado negtivamente. Este residuo xunto cos cinco residuos do filtro forman o poro que conecta a cavidade chea de auga do centro da proteína coa solución extracelular.[62]

Mecanismo de selectividade

O mecanismo de selectividade da canle de potasio segue estando en continua discusión. Os oxíxenos carbonilo son fortemente electronegativos e atractores de catións. O filtro pode acomodar ións potasio en 4 sitios xeralmente etiquetados como S1 a S4 empezando polo lado extracelular. Ademais, na cavidade pode unirse un ión no sitio chamado SC ou un ou máis ións no lado extracelular a sitios máis ou menos ben definidos chamados S0 ou Sext. Son posibles varias ocupacións diferentes destes sitios. Como as estruturas de raios X son medias obtidas de moitas moléculas, non é posible deducir as ocupacións reais directamente de dita estrutura. En xeral, hai algunha desvantaxe debido á repulsión electrostática para que dous sitios veciños estean ocupados por ións. Fixéronse propostas sobre o mecanismo de selectividade baseándose en simulacións da dinámica molecular,[63] modelos de xoguete de unión de ións,[64] cálculos termodinámicos,[65] consideracións topolóxicas,[66][67] e diferenzas estruturais[68] entre canles selectivas e non selectivas.

O mecanismo para a translocación de ións en KcsA foi estudado amplamente por cálculos teóricos e simulacións.[62][69] A predición dun mecanismo de condución de ións no cal os dous estados dobremente ocupados (S1, S3) e (S2, S4) xogan un papel esencial foi sinalado por ambas as técnicas. As simulacións de dinámica molecular suxiren que os dous estados extracelulares, Sext e S0, que reflicten ións que entran e saen do filtro, son tamén actores importantes na condución de ións.

Rexión hidrofóbica

Esta rexión neutraliza o ambiente arredor do ión potasio para que non sexa atraído por ningunha carga. Á súa vez, acelera a reacción.

Cavidade central

Preto do centro da canle transmembrana está localizado un poro central de 10 Å de ancho, onde a barreira de enerxía é maior para o ión que atravesa debido á hidrofobicidade da parede da canle. A cavidade chea de auga e o C-terminal polar das hélices do poro reducen a barreira enerxética para o ión. A repulsión producida por múltiples ións potasio precedentes pénsase que axuda ao rendemento dos ións. A presenza da cavidade pode comprenderse intuitivamente como un dos mecanismos da canle para superar a barreira dieléctrica ou a repulsión pola membrana dielectricamente baixa, ao manter o ión K+ nun ambiente acuoso e dielectricamente alto.

Remove ads

Regulación

Thumb
Representacións gráficas de canles de potasio abertos e pechados (PDB 1lnq e PDB 1k4c). Móstranse dúas canles bacterianas simples para comparar a esrutura da canle "aberta" á dereita coa estrutua "pechada" á esquerda. Na parte superior está o filtro (selecciona ións potasio), e abaixo está o dominio que controla a apertura e peche da canle.

O fluxo de ións a través do poro da canle de potasio é regulado por dous procesos relacionados, denominados apertura/peche (gating) e inactivación. A apertura/peche da canle faise en resposta a estímulos, mentres que a inactivación é o cesamento rápido da corrente desde unha canle de potasio aberta e a supresión da capacidade da canle de volver a conducilos. Aínda que ambos os procesos serven para regular a condutancia da canle, cada proceso pode depender de varios mecanismos.

Xeralmente, a apertura/peche pénsase que depende de dominios estruturais adicionais que perciben os estímulos e á súa vez abren o poro da canle. Entre estes dominios están os dominios RCK das canles BK,[70][71][72] e os dominios de sensor de voltaxe das canles de K+ dependenes de voltaxe. Estes dominios pénsase que responden a estímulos abrindo fisicamente a porta intracelular do dominio do poro, deixando así que os ións potasio atravesen a membrana. Algunhas canles teñen moitos dominios regulatorios ou proteínas accesorias, que poden actuar para modular a resposta ao estímulo. Aínda que se continúan discutindo os posibles mecanismos, coñécense as estruturas de varios destes dominios reguladores, como a dos dominios RCK de canles procariotas[73][74][75] e eucariotas,[70][71][72] dominio de apertura por pH de KcsA,[76] dominios de apertura/peche de nucleótido cíclico,[77] e canles de potasio dependentes de voltaxe.[78][79]

A inactivación de tipo N é tipicamente o mecanismo de inactivación máis rápido e chámase modelo de "bóla e cadea".[80] A inactivación de tipo N implica a interacción do N-terminal da canle ou unha proteína asociada, que interacciona co dominio do poro e oclúe a vía de condución de ións como unha "bóla". Alternativamente, a inactivación de tipo C pénsase que ocorre dentro do propio filtro de selectividade, no que cambios estruturais no filtro fan que sexa non condutivo. Hai varios modelos estruturais de filtros de canles de K+ inactivados de tipo C,[81][82][83] aínda que o mecanismo preciso segue estando pouco claro.

Remove ads

Farmacoloxía

Bloqueantes

Os bloqueantes da canle de potasio inhiben o fluxo de ións potasio a través da canle. Compiten coa unión do potasio co filtro de selectividade ou únense fóra do filtro para ocluír a condución. Un exemplo dun destes competidores son os ións de amonio cuaternario, que se unen á face extracelular[84][85] ou cavidade central da canle.[86] Como bloquean na cavidade central os ións de amonio cuaternario tamén se coñecen como bloqueantes da canle aberta, xa que a unión require clasicamente a pevia apertura da porta citoplasmática.[87]

Os ións de bario poden tamén bloquear as correntes da canle de potasio,[88][89] ao unirse con alta afinidade no filtro de selectividade.[90][91][92][93] Esta estreita unión pénsase que explica a toxicidade do bario ao inhibir a actividade da canle de potasio en células excitables.

Medicamente os bloqueantes da canle de potasio, como a 4-aminopiridina e a 3,4-diaminopiridina, foron investigados para o tratamento de condicións como a esclerose múltiple.[49] Os efectos de fármacos fóra de diana poden orixinar a síndrome de QT longa inducida por fármacos, unha condicións que pode ser mortal. Isto débese xeralmente á acción da canle de potasio hERG no corazón. En consecuencia, todos os novos fármacos son testados preclinicamente para ver se son seguros para o corazón.

Activadores

Thumb
Escultura Birth of an Idea (2007) de Julian Voss-Andreae. A escultra foi encargada por Roderick MacKinnon baseándose nas coordenadas atómicas das moléculas que foron determinadas polo grupo de MacKinnon en 2001.

Algúns exemplos son:

  • Diazoxida[94] vasodilatador usado para a hipertensión e relaxación da actividade do músculo liso.
  • Minoxidil[95] vasodilatador usado para a hipertensión, tamén usado para tratar a perda de cabelo.
  • Nicorandil[96] vasodilatador usado para tratar a anxina de peito.
  • Pinacidil.[97]
  • Retigabina,[98][99] un anticonvulsivo
  • Flupirtina, analxésico con propiedades relaxantes musculares e anticonvulsivas.
Remove ads

Canle de potasio muscarínico

Algúns tipos de canle de potasio son activadas por receptores muscarínicos e denomínanse canles de potasio muscarínicos (IKACh). Estas canles son un heterotetrámero composto por dúas subunidades GIRK1 e outras dúas GIRK4.[100][101] Exemplos son as canles de potasio no corazón, que, cando son activadas por sinais parasimpáticos a través de receptores muscarínicos M2, causan unha corrente de potasio cara ao exterior, que diminúe a frecuencia cardíaca.[102][103]

Remove ads

Na arte

Roderick MacKinnon encargou a escultura Birth of an Idea (Nacemento dunha idea), de 1,5 m de altura, baseada na canle de potasio KcsA.[104] A obra de arte consiste nun obxecto de arame que representa o interior da canle cun obxecto de vidro soprado que representa a cavidade principal da estrutura da canle.

Notas

Véxase tamén

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads