Proteína ATM

From Wikipedia, the free encyclopedia

Remove ads

A proteína ATM (do inglés ataxia telangiectasia mutated, ataxia telanxiectasia mutada) é un encima serina/treonina proteína quinase que é recrutada e activada polas roturas de dobre febra no ADN. Esta quinase fosforila varias proteínas clave que inician a activación do punto de control do ciclo celular dos danos no ADN, facendo que o ciclo celular se deteña, e haxa unha reparación do ADN ou se produza a apoptose. Varias das súas dianas son: p53, CHK2, BRCA1, NBS1 e H2AX, que son supresores de tumores.

ATM
Identificadores
Símbolo ATM
Símbolos alt. ATM serine/threonine kinase, AT1, ATA, ATC, ATD, ATDC, ATE, TEL1, TELO1
Entrez 472
OMIM

607585

RefSeq NP_000042.3
UniProt Q13315
Outros datos
Locus Cr. 11 :(108.22 – 108.37 Mb)

A proteína é denominada así polo trastorno homónimo ataxia telanxiectasia causado por mutacións que afectan á proteína ATM.[1] A proteína está codificada en humanos no xene ATM, situado no cromosoma 11.

Remove ads

Introdución

Ao longo do ciclo celular compróbase se o ADN sufriu danos. Os danos orixínanse por erros durante a replicación do ADN, ou son producidos por subprodutos do metabolismo, drogas tóxicas xerais ou radiación ionizante. O ciclo celular ten diferentes puntos de control dos danos no ADN, que inhiben o seguinte paso do ciclo celular ou manteñen o actual. Hai dous puntos de control principais durante o ciclo celular, o do G1/S e o do G2/M, que preservan a progresión correcta. A ATM xoga un papel no atraso do ciclo celular despois de que se producen danos no ADN, especialmente despois de roturas de dobre febra.[2] A ATM xunto co NBS1 actúan como proteínas sensoras primarias das roturas de dobre febra. Diferentes mediadores, como Mre11 e MDC1, sofren modificacións postradicionais, que son xeradas polas proteínas sensoras. Estas proteínas mediadoras modificadas amplifican despois o sinal de danos no ADN e transducen os sinais a efectores situados augas abaixo da ruta como CHK2 e p53.

Remove ads

Estrutura

O xene ATM codifica unha proteína de 350 kDa que consta de 3056 aminoácidos.[3] A ATM pertence á superfamilia das quinases relacionadas coa fosfatidilinositol 3-quinase (PIKKs). A superfamilia PIKK comprende seis serina/treonina-proteína quinases que mostran unha similitude de secuencia coas fosfatidilinositol 3-quinases (PI3Ks). Esta familia de proteína quinases inclúe entre outros a ATR (proteína relacionada con ATM e RAD3), a DNA-PKcs (subunidade catalítica da proteína quinase dependente de ADN) e a mTOR (diana de mamíferos da rapamicina). É característico da ATM ter cinco dominios. Estes son desde o N-terminal ao C-terminal os seguintes: dominio de repeticións HEAT, dominio FRAP-ATM-TRRAP (FAT), dominio quinase (KD), dominio regulador de PIKK (PRD) e dominio FAT-C-terminal (FATC). As repeticións HEAT únense directamente ao C-terminal de NBS1. O dominio FAT interacciona co dominio quinase da ATM para estabilizar a rexión C-terminal da propia ATM. O dominio KD reinicia a actividade quinase, mentres que os dominios PRD e o FATC regúlana. Aínda que non foi resolta ningunha estrutura da ATM, a forma global da ATM é moi similar a DNA-PKcs e está composta dunha cabeza e un longo brazo que se pensa que se enrola arredor da dobre febra do ADN despois dun cambio conformacional. O dominio N-terminal enteiro xunto co dominio FAT prediciuse que adoptan unha estrutura α-helicoidal, o cal se deduce por análise das secuencias. Esta estrutura α-helicoidal crese que forma unha estrutura terciaria, que ten unha forma curvada tubular presente por exemplo na proteína huntingtina, que tamén contén repeticións HEAT. O FATC é o dominio C-terminal cunha lonxitude de aproximadamente 30 aminoácidos. Está altamente conservada e consiste nunha hélice α seguida dun pronunciado xiro, que está estabilizado por unha ponte disulfuro.[4]

Thumb
Ilustración esquemática dos catro dominios conservados en catro membros da familia PIKKs.[4]
Remove ads

Función

Un complexo de tres proteínas, MRE11, RAD50 e NBS1 (XRS2 en lévedos), chamado en humanos complexo MRN, recruta a ATM nas roturas de dobre febra e mantén os dous extremos unidos. A ATM interactúa directamente coa subunidade NBS1 e fosforila a variante de histona H2AX no residuo Ser139.[5] Esta fosforilación xera sitios de unión para proteínas adaptadoras cun dominio BRCT. Despois, estas proteínas adaptadoras recrutan diversos factores incluíndo a proteína quinase efectora CHK2 e o supresor de tumores p53. A resposta aos danos no ADN mediada pola ATM consiste nunha resposta rápida e outra atrasada. A quinase efectora CHK2 é fosforilada e, por tanto, activada pola ATM. A CHK2 activada fosforila a fosfatase CDC25A, a cal é seguidamente degradada e xa non pode desfosforilar a CDK2-ciclina, o que ten como resultado a detención do ciclo celular. Se a rotura de dobre febra non pode ser reparada durante esta resposta rápida, a ATM adicionalmente fosforila MDM2 e p53 na Ser15.[6] Despois, p53 é tamén fosforilada pola quinase efectora CHK2. Estes eventos de fosforilación conducen á estabilización e activación de p53 e a posterior transcrición de numerosos xenes diana de p53 incluíndo a CDK inhibidora p21, o que causa unha detención de longo prazo do ciclo celular ou incluso a apoptose.[7]

Thumb
Resposta mediada por ATM ás roturas de dobre febra do ADN en dous pasos. Na resposta rápida, a ATM activada fosforila a quinase efectora CHK2, que fosforila CDC25A, deixándoa marcada para a súa ubiquitinación e degradación. Por tanto, acumúlase a CDK2-ciclina fosforilada e bloquéase a progresión do ciclo celular. Na resposta atrasada a ATM fosforila o inhibidor de p53, MDM2 e p53, a cal é tamén fosforilada por CHK2. A activación resultante e estabilización de p53 causa o incremento da expresión do inhibidor de Cdk p21, que despois axuda a manter baixa a actividade de CDK para manter a detención de longo prazo do ciclo celular.[7]

A proteína quinase ATM pode tamén estar implicada na homeostase mitocondrial, como regulador da autofaxia mitocondrial (mitofaxia) por medio da cal se eliminan as mitocondrias vellas disfuncionais.[8]

Remove ads

Regulación

Cómpre un complexo MRN funcional para a activación da ATM despois dunha rotura de dobre febra. O complexo funciona augas arriba de ATM en células de mamífero e induce cambios conformacionais que facilitan un incremento da afinidade de ATM polos seus substratos, como CHK2 e p53.[2] A ATM inactiva está presente nas células sen roturas de dobre febra en forma de dímeros ou multímeros. Despois de que se producen danos no ADN, a ATM autofosforílase no residuo Ser1981. Esta fosforilación provoca a disociación de dímeros de ATM, o que vai seguido da liberación de monómeros de ATM activa.[9] É necesaria unha maior autofosforilación (nos residuos Ser367 e Ser1893) para que a ATM quinase teña unha actividaded normal. A activación de ATM polo complexo MRN é precedida por polo menos dous pasos, é dicir, o recrutamento de ATM en extremos de roturas de dobre febra polo mediador proteína 1 do punto de comprobación de danos no ADN (MDC1), que se une a MRE11, e a posterior estimulación da actividade quinase co C-terminal de NBS1. Na regulacion da actividade do dominio KD quinase están implicados os tres dominios: FAT, PRD e FATC. O dominio FAT interacciona co dominio KD de ATM para estabilizar a rexión C-terminal da propia ATM. O dominio FATC é esencial para a actividade quinase e moi sensible á mutaxénese. Actúa de mediador en interaccións proteína-proteína, por exemplo coa histona acetiltransferase TIP60 (HIV-1 Tat interacting protein 60 kDa), que acetila ATM no residuo Lys3016. A acetilación ocorre na metade C-terminal do dominio PRD e cómpre para a activación da ATM quinase e para a súa conversión en monómeros. Aínda que a completa deleción do dominio PRD elimina a actividade quinase da ATM, delecións pequenas específicas non mostran ningún efecto.[4]

Remove ads

Papel no cancro

A ataxia telanxiectasia (AT) é unha rara doenza humana caracterizada por unha dexeneración cerebelar, sensibilidade celular extrema á radiación e unha predisposición ao cancro. Todos os pacientes de AT presentan mutacións no xene ATM. A maioría dos outros trastornos similares á AT son defectivos en xenes que codifican o complexo proteico MRN. Unha característica da proteína ATM é o seu rápido incremento na actividade quinase que segue inmediatamente á formación de roturas de dobre febra.[10][11] A manifestación fenotípica da AT débese á ampla variedade de substratos da quinase ATM, que están implkicados na reparación do ADN, apoptose, puntos de control do ciclo celular en G1/S, intra-S e G2/M, regulación xénica, iniciación da tradución de proteínas e mantemento dos telómeros.[12] Por tanto, un defecto na ATM ten graves consecuencias na reparación de certos tipos de danos no ADN e pode orixinarse cancro como resultado dunha reparación inadecuada. Os pacientes de AT teñen un incremento do risco de ter cancro de mama, que foi asignado á interacción de ATM e fosforilación de BRCA1 e as súas proteínas asociadas despois de producírense danos no ADN.[13] Certos tipos de leucemias e linfomas, incluíndo o linfoma de célula do manto, a T-ALL, leucemia linfocítica crónica de célula B atípica e T-PLL están tamén asociadas con defectos na ATM.[14]

Remove ads

Frecuencias da mutación ATM en cancros esporádicos

As mutación no xene ATM encóntranse en frecuencias relativamente baixas en cancros esporádicos. Segundo COSMIC (Catalogue Of Somatic Mutations In Cancer, Catálogo de Mutacións Somáticas no Cancro) as frecuencias ás cales se encontraron mutacións heterocigotas en ATM en cancros comúns son 0,7% en 713 casos de cancros ováricos estudados, 0,9% en cancros do sistema nervioso central, 1,9% en 1.120 casos de cancros de pulmón, 2,1% en 847 casos de cancros de ril, 4,6% en cancros de colon, 7,2% en 1.040 casos de cancros de pulmón e 11,1% en 1.790 cancros de tecido linfoide e hematopoético.[15]

Remove ads

Deficiencias epixenéticas frecuentes en ATM en cancros

O ATM é un dos xenes de reparación do ADN que se encontran frecuentemente hipermetilados na súa rexión promotora en varios cancros. A metilación do promotor de ATM causa a redución da expresión da proteína ou o ARNm de ATM.

Observouse que máis do 73% dos tumores de cerebro atopáronse metilados no promotor do xene ATM e había unha forte correlación inversa entre a metilación do promotor de ATM e a súa expresión proteica (p < 0,001).[16]

Observouse tamén que o promotor do xene ATM estaba hipermetilado no 53% dos cancros de mama pequenos (impalpables)[17] e estaba hipermetilado no 78% dos cancros de mama en estadio II ou maior cunha correlación altamente significativa (P = 0.0006) entre a redución da abundancia do ARNm de ATM e a metilación aberrante do promotor do xene ATM.[18]

No cancro de pulmón de células non pequenas, o status de metilación do promotor do xene ATM de tumores pares e do tecido pulmonar non implicado histoloxicamente que o rodea atopouse que era dun 69% e 59%, respectivamente. Porén, en cancros dese tipo máis avanzados a frecuencia de metilación do promotor de ATM era menor do 22%.[19] O descubrimento da metilación do promotor de ATM en tecido pulmonar non implicado histoloxicamente que rodea o tumor suxire que a deficiencia en ATM pode estar xa presente temperanmente nun defecto de campo, o que despois conduce á progresión a cancro de pulmón de células non pequenas.

En carcinoma de células escamosas de cabeza e pescozo, o 42% dos tumores presentaban metilación no promotor de ATM.[20]

Os danos no ADN parecen ser a principal causa subxacente de cancro,[21][22] e as deficiencias na reparación do ADN probablemente son a causa subxacente de moitas formas de cancro.[23] Se a reparación do ADN é deficiente, os danos no ADN tenden a acumularse. Dito exceso de danos no ADN pode incrementar os erros mutacionais durante a replicación do ADN debido á síntese translesión tendente ao erro. O exceso de danos no ADN pode tamén incrementar as alteracións epixenéticas debido a erros durante a reparación do ADN.[24][25] Esas mutacións e alteracións epixenéticas poden dar lugar a cancros. A deficiencia epixenética frecuente de ATM en diversos cancros probablemente contribúe á progresión de ditos cancros.

Remove ads

Meiose

A ATM funciona durante a profase meiótica.[26] O xene da ATM de tipo salvaxe exprésase a un nivel multiplicado por 4 en testículos humanos comparados con células somáticas (como os fibroblastos da pel).[27] Tanto en ratos coma en humanos, a deficiencia en ATM ten como resultado a infertilidade en femias e machos. A expresión deficiente de ATM causa graves disrupcións meióticas durante a profase I meiótica.[28] Ademais, a alteración da reparación de roturas de dobre febra no ADN mediada por ATM foi identificada como unha causa probable de envellecemento dos ovocitos de rato e humanos.[29] A expresión do xene ATM, e outros xenes claves de reparación de roturas de dobre febra, declina coa idade en ovocitos de ratos e humanos e este declive vai en paralelo cun incremento de roturas de dobre febra en folículos primordiais.[29] Estes descubrimentos indican que a reparación recombinacional homóloga mediada por ATM é unha función crucial na meiose.

Remove ads

Interaccións

A ataxia telanxiectasia mutada presenta interaccións con:

Notas

Véxase tamén

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads