Loading AI tools
entità composta da un insieme di almeno due atomi Da Wikipedia, l'enciclopedia libera
In fisica e chimica, la molecola (dal latino scientifico molecula, derivato a sua volta da moles, che significa "mole", cioè "piccola quantità") è un'entità elettricamente neutra composta da due o più atomi uniti da un legame covalente.[1][2] Nella definizione del compendium of Chemical Terminology della IUPAC gli atomi formano una buca di potenziale coulombiano sufficientemente profonda da consentire la presenza di almeno uno stato vibrazionale.[3]
Può essere composta da più atomi dello stesso elemento o di elementi diversi e identifica una sostanza, di cui costituisce l'unità fondamentale. Molecole costituite dagli stessi atomi con una diversa disposizione nello spazio sono dette isomeri di una sostanza e si differenziano per le proprietà fisiche.
In chimica organica e biochimica, il termine molecola identifica talvolta anche ioni poliatomici, mentre nella teoria cinetica dei gas è spesso utilizzato per ogni particella gassosa, indipendentemente dalla sua composizione: con tale definizione anche i singoli atomi nella famiglia dei gas nobili possono essere considerati molecole.[4]
La descrizione a livello atomico della materia utilizza il formalismo della meccanica quantistica, che attraverso la caratterizzazione probabilistica di una particella fornita dalla funzione d'onda permette di spiegare la natura elettromagnetica dei legami fisici e chimici che governano il comportamento delle molecole e dei loro costituenti. In tale contesto, lo studio della dinamica molecolare si basa sull'approssimazione di Born-Oppenheimer, anche detta approssimazione adiabatica, che considera il moto dei nuclei indipendente da quello degli elettroni, dal momento che i primi sono estremamente più pesanti e quindi più lenti dei secondi. Questo rende possibile la fattorizzazione della funzione d'onda totale della molecola:[5][6]
dove il pedice e indica la funzione d'onda degli elettroni, il pedice n dei nuclei, ed e sono rispettivamente le posizioni di nuclei ed elettroni.
Tale funzione d'onda soddisfa l'equazione agli autovalori:
dove è l'energia cinetica degli elettroni, quella dei nuclei, l'interazione coulombiana tra nuclei ed elettroni, l'interazione coulombiana tra gli elettroni e quella tra i nuclei.
Nell'approssimazione adiabatica, si richiede che la funzione d'onda elettronica soddisfi l'equazione agli autovalori:
La precedente espressione è ottenuta grazie al fatto che l'operatore , contenuto nel termine , non agisce sulle coordinate dei nuclei, così che la funzione d'onda dei nuclei si possa raccogliere a fattor comune.
La funzione d'onda dei nuclei, invece, è ricavata a partire dall'equazione totale, che esplicitando l'operatore impulso diventa:
Essendo che:
Si ottiene:
che, trascurando per l'approssimazione adiabatica il termine:
diventa, inserendo la soluzione dell'equazione elettronica:
che è l'equazione del moto dei nuclei.
Il potenziale che guida il moto dei nuclei:
è detto potenziale adiabatico o potenziale intermolecolare, e sta alla base della dinamica della molecola.
Dall'espressione del potenziale adiabatico si evince che la dinamica dei nuclei è guidata dall'energia fornita dall'equazione elettronica: questo termine è fondamentale, dal momento che rappresenta il "collante" che tiene uniti i nuclei degli atomi che compongono la molecola.[7]
Per le molecole biatomiche il potenziale adiabatico è un potenziale armonico, e può essere approssimato dal potenziale di Morse, che a differenza dell'oscillatore armonico quantistico include esplicitamente gli effetti della rottura del legame chimico, come l'esistenza di stati non legati.
Le molecole biatomiche sono composte da due atomi, e si distinguono in molecole omonucleari, quando gli atomi sono dello stesso elemento chimico, ed eteronucleari, quando invece gli atomi differiscono.
Le molecole diatomiche omonucleari sono composte da due atomi dello stesso elemento chimico; la più semplice di queste è H2+, per la quale l'equazione elettronica assume la forma:[8]
dove , il secondo ed il terzo termine rappresentano l'attrazione Vne dell'elettrone nei confronti dei nuclei ed il quarto la repulsione dei due nuclei.
I due protoni formano due buche di potenziale, e la funzione d'onda dell'elettrone è la combinazione lineare di due funzioni d'onda idrogenoidi :[9]
La funzione d'onda costituisce l'orbitale molecolare di legame, la funzione costituisce l'orbitale di antilegame.[10] L'orbitale di legame ha energia minore dell'orbitale di antilegame.
Le funzioni , sebbene descrivano bene la distribuzione di probabilità dell'elettrone nello stato fondamentale, non sono soluzioni esatte dell'equazione elettronica.
La funzione d'onda , nello spazio tra i due nuclei, è maggiore delle singole funzioni d'onda idrogenoidi , ed è questo fatto che genera il legame covalente tra i due nuclei. Si nota infatti che la densità di probabilità associata alla funzione d'onda:
contiene un termine di interazione, il doppio prodotto, che rappresenta la sovrapposizione delle due funzioni d'onda: si tratta di una regione di carica negativa che unisce i due nuclei di carica opposta.
Per quanto riguarda l'orbitale di antilegame , esso si annulla a metà tra i due nuclei, dove genera una densità di probabilità minore di quella che avrebbe senza il termine di sovrapposizione.
Si consideri ora la molecola H2, la più semplice molecola neutra. Avendo due elettroni, la funzione d'onda elettronica di singoletto è data da:[11]
e rappresenta l'orbitale di legame, mentre quella di tripletto da:[12]
che rappresenta l'orbitale di antilegame, dove:
e
sono gli stati di spin, in cui + rappresenta lo spin-up, - lo spin-down.
La densità di probabilità spaziale è:[12]
Anche in questo caso il termine di interferenza rappresenta la sovrapposizione delle funzioni d'onda idrogenoidi nella regione tra i nuclei, e comporta un aumento di carica nel caso di singoletto (segno +), ed una diminuzione di carica nel tripletto (segno -).
Nelle molecole eteronucleari la simmetria che caratterizzava le molecole omonucleari viene a mancare, e gli orbitali non sono una pura combinazione simmetrica e antisimmetrica degli orbitali atomici. In tali molecole gli orbitali possono essere approssimati con gli autostati di una matrice quadrata di dimensione 2:[13]
dove:
è l'effettiva hamiltoniana di singolo elettrone mentre gli stati e sono gli orbitali corrispondenti rispettivamente all'atomo sinistro e destro.
Gli autovalori associati alla matrice sono:
Gli orbitali di legame e antilegame sono dati dagli autostati:
con:
per si ottiene la molecola omonucleare, ed il termine rappresenta lo splitting tra l'orbitale di legame e di antilegame di una molecola omonucleare, ovvero lo splitting tra le combinazioni simmetriche ed antisimmetriche.[13]
Al crescere di gli autostati di legame e di antilegame assomigliano sempre più agli orbitali e dei singoli atomi, e lo stesso avviene per i rispettivi autovalori dell'energia.[14] Quando la differenza è tale da comportare un trasferimento completo di carica tra i due atomi, il legame si dice ionico.
Le molecole poliatomiche possiedono più di due atomi, che nella maggior parte dei casi sono diversi fra loro. La loro struttura è estremamente diversificata poiché le possibili combinazioni tra gli orbitali atomici che formano gli orbitali molecolari sono estremamente numerose.
Oltre al legame che caratterizza le molecole biatomiche, nelle molecole poliatomiche gli orbitali atomici s e p si possono combinare fra loro per formare orbitali detti ibridi.
Si riportano di seguito due esempi di molecole poliatomiche, l'acqua ed il metano:
Una delle più semplici molecole poliatomiche è quella dell'acqua, in cui l'ossigeno ha un orbitale p caratterizzato da una tripla degenerazione sui tre assi cartesiani, che genera due possibili configurazioni elettroniche: la prima è il caso in cui i 4 elettroni riempiono completamente due lobi dell'orbitale, lasciando il terzo vuoto, mentre la seconda è il caso in cui si abbiano due elettroni su un lobo, ed uno su ognuno dei restanti due. Tale orbitale può essere quindi scritto come 2pxpypz2, in cui si è supposto che il lobo diretto lungo l'asse z contenga due elettroni, e questo rende possibile la formazione di due legami covalenti, in cui ai lobi x e y si legano i due atomi di idrogeno.[15]
Il metano è una molecola con un orbitale ibrido. Il carbonio ha configurazione elettronica 1s22s22p2, e l'orbitale p e nel suo stato fondamentale può quindi legarsi con solo due atomi di idrogeno. La molecola di metano esiste, tuttavia, dal momento che un elettrone dell'orbitale 2s2 viene promosso all'orbitale p, sicché la configurazione elettronica diventa 1s22s2pxpypz, generando quattro elettroni disaccoppiati che possono legarsi ad altrettanti atomi di idrogeno.
I quattro orbitali molecolari ibridi sono quindi una combinazione lineare degli stati , , , della forma:[16]
e formano un tetraedro con l'atomo di carbonio al centro.
L'orbitale molecolare caratterizza la configurazione elettronica di una molecola, definendo la distribuzione spaziale e l'energia degli elettroni, ed è stato introdotto da Friedrich Hund[17][18] e Robert S. Mulliken[19][20] nel 1927 e 1928.[21][22]
Un orbitale molecolare è rappresentato da una funzione d'onda il cui quadrato descrive la distribuzione di probabilità relativa alla posizione dell'elettrone. Tale funzione d'onda si ottiene dall'equazione d'onda che descrive l'intera molecola, che in generale non è di facile soluzione: questa problematica viene risolta mediante un'approssimazione che consiste nello scrivere l'orbitale molecolare come combinazione lineare degli orbitali atomici dei singoli atomi. Tale approssimazione è descritta dalla teoria degli orbitali molecolari.
L'ordine di legame è inoltre la semidifferenza tra il numero di elettroni leganti e il numero di elettroni antileganti. L'ordine di legame è un indice della forza del legame stesso e viene utilizzato estensivamente anche nella teoria del legame di valenza.
La teoria degli orbitali molecolari è una tecnica per determinare la struttura molecolare in cui si pone che gli elettroni non siano assegnati a particolari legami chimici, ma siano trattati come oggetti che si muovono sotto l'influenza dei nuclei all'interno dell'intera molecola.[23]
La funzione d'onda totale degli elettroni è scritta come combinazione lineare:[24]
dove sono gli orbitali atomici, e i coefficienti della sommatoria, ricavati risolvendo l'equazione di Schrödinger per ed applicando il principio variazionale.
Le proprietà principali degli orbitali molecolari così definiti sono:
La nomenclatura degli orbitali molecolari ricalca quella degli orbitali atomici: quando un orbitale ha simmetria cilindrica rispetto alla congiungente dei due nuclei, detta direzione di legame, viene indicato con la lettera greca ; quando si trova da parti opposte rispetto alla direzione di legame viene indicato con . Accanto alla lettera si scrive un indice che indica da quale tipologia di legame atomico è formato l'orbitale molecolare.[26]
Vi è inoltre una terza tipologia di legame, denotato con , ottenuto dalla sovrapposizione di quattro lobi di due orbitali atomici. Esistono in questo caso due piani nodali siti fra i due nuclei che contraggono tale legame. Il legame δ è riscontrato nel legame quadruplo, legame multiplo importante in chimica inorganica e che caratterizza complessi quale [Re2Cl10]4- o altri tipi di cluster.
L'orbitale di antilegame si denota inoltre con un asterisco, ad esempio la molecola H2 possiede un orbitale di legame ed un orbitale di antilegame .
Tale legame viene rappresentato come in figura a lato, e si può notare che gli elettroni di hanno energia maggiore, e costituiscono un orbitale detto HOMO (Highest Occupied Molecular Orbital), mentre gli elettroni di e costituiscono gli orbitali vuoti a minore energia detti LUMO (Lowest
Unoccupied Molecular Orbital). L'orbitale LUMO è il centro in cui la molecola può subire un attacco nucleofilo di una
base di Lewis, e si tratta quindi del centro di acidità di Lewis. Viceversa, HOMO è il centro di basicità di Lewis della molecola, e può subire un attacco elettrofilo.
Se la differenza di elettronegatività è maggiore di un valore convenzionale fissato a 1,9 vi è un trasferimento completo di carica tra i due atomi, cioè la nuvola elettronica può considerarsi come spostata completamente sull'elemento più elettronegativo. Tale legame prende il nome di legame ionico.
Se il numero atomico dei due atomi differisce di molto accade che gli orbitali molecolari si formino tra orbitali atomici con energia simile, invece che dello stesso tipo.[29]
I nuclei sono soggetti al potenziale adiabatico definito in precedenza, che nelle molecole biatomiche è indipendente dalla posizione del centro di massa della molecola e dall'orientazione della retta congiungente i due nuclei. Il potenziale gode quindi di invarianza rispetto alle traslazioni ed alle rotazioni, e il moto dei nuclei può essere studiato come un problema a due corpi, sicché l'equazione di Schrödinger può essere separata in moto radiale, dipendente dalla distanza tra i due nuclei, e moto orbitale, dipendente dal numero quantico orbitale. L'equazione di Schrödinger nel caso di un moto in un campo centrale è:
dove indica la posizione del centro di massa e la posizione relativa dei due nuclei, differenza delle rispettive posizioni.
Il problema può essere quindi separato in due equazioni, una per il centro di massa ed una per la particella di massa μ che si muove in un campo centrale rispetto al centro di massa. La funzione d'onda si può quindi fattorizzare nel seguente modo: . L'equazione per , che rappresenta il problema della particella libera, fornisce l'energia traslazionale della molecola. L'equazione per si può ulteriormente fattorizzare in parte radiale, dipendente da r, e parte angolare, dipendente dalle coordinate angolari: .
La soluzione per sono le armoniche sferiche, ed i rispettivi stati sono autostati del momento angolare orbitale e della sua componente lungo l'asse z.
L'equazione per è invece, detta :[34]
dove il secondo termine rappresenta il contributo energetico rotazionale , che dipende dal numero quantico orbitale l.
Il potenziale adiabatico può essere inoltre sviluppato in serie di Taylor, che troncata al secondo ordine è:[6]
dove è il valore di che minimizza , e rappresenta la posizione di equilibrio dei due nuclei. Tale espressione rappresenta un moto armonico attorno a che fornisce un contributo energetico dato dall'energia dell'equazione elettronica contenuta in e dall'energia vibrazionale .
Detta la lunghezza caratteristica data dalla relazione e detta , le soluzioni dell'equazione per sono:
dove è il polinomio di Hermite di grado .
Lo spettro energetico contiene in definitiva tre termini:
Tali termini sono i contributi energetici che caratterizzano la dinamica della molecola biatomica, e nello specifico sono:[6][35]