トップQs
タイムライン
チャット
視点

ヒルベルトの23の問題

ダフィット・ヒルベルトによりまとめられた、当時未解決だった23の数学問題 ウィキペディアから

Remove ads

ヒルベルトの23の問題(ヒルベルトの23のもんだい、: Hilbert(’s) 23 problems)は、ドイツ人の数学者であるダフィット・ヒルベルトによりまとめられた、当時未解決だった23の数学問題である。ヒルベルト問題 (Hilbert(’s) problems) とも呼ばれる。

Remove ads

概要

要約
視点

1900年8月8日に、パリで開催されていた第2回国際数学者会議 (ICM) のヒルベルトの公演で、23題の内10題(問題1, 2, 6, 7, 8, 13, 16, 19, 21, 22)が公表され、残りは後に出版されたヒルベルトの著作で発表された[1]

第24問題

彼は元々24題の問題を用意していたが、その内の1題は割愛された。この24番目の問題(簡潔性と総合的な方法の評価基準に関する証明論)は2000年にドイツの歴史学者リュディガー・ティーレドイツ語版によって発見されたヒルベルトの手記中に、その存在が初めて確認された[2]

さらに見る 代数的数 ...
Remove ads

ヒルベルトの問題の性質および影響

要約
視点

ヒルベルトは、当時彼の実力と名声の頂点にあり、その後にはゲッティンゲン大学で類を見ないような学派を率いることになるのだった。しかし、この問題をつぶさに見ていくならば、それほど単純でない。

当時の数学はまだ散漫なものであり、言葉を記号に、直感への訴えかけを公理に置き替える傾向はまだ抑制されていた。これらは次世代の数学者たちによって強く取り入れられることになる。

1900年のヒルベルトは(それぞれの分野に恒久的な変革をもたらす)公理的集合論ルベーグ積分位相空間あるいはチャーチの提唱を利用することはできなかった。関数解析は、ある意味ヒルベルト空間を見いだしたヒルベルト自身によって基礎づけられたといえるが、そのころはまだ変分法との明確な区別がされていなかった。変分数学に関連した問題が2つリストに挙げられている一方で、素朴な問いが立てられたであろうスペクトル理論に関する問題は一つもない(問題19は準楕円性に関連しているが)。

その意味では、リストは予言的ではなかった。ヒルベルトのリストは位相幾何学群論および測度論20世紀に急速に発展することを予測できていなかったし、数理論理学が成功していく方法論とは違った考え方にたっていた。したがって、リストの直接の価値は、部分的で個人的な論説としてのものでしかなく、いくつかの研究プログラムと未終結の調査を示しただけのものだともいえる。

実は、投げかけられた問の多くは21世紀の(あるいは1950年代の、でも)職業数学者の、よい問に対する解答は数学の学術的専門誌で公表された論文の形をとるだろうという考えを裏切ることになった。もしそうだったとしたら、リストの解説は問題が解決されていれば論文の掲載誌への参照を示し、さもなければ質問が未解決であるといえるほどに簡単になっただろう。

場合によっては、ヒルベルトが用いた言葉は、何が問題として定式されているのかについて、何かしら解釈の余地があると考えられる。繰り返しになるが、ヒルベルト自身によるユークリッド幾何の定式化に端を発し、プリンキピア・マテマティカをへてブルバキと至るまで純粋数学に植え付けられた公理的な基礎付けはまだなかった。 驚くべきことに、第1と第5の問題は記述が十分に明瞭でないために未解決の状態にあるとも言える。

第12問のような場合では、ヒルベルトが何を目指していたのかがわかりやすいように書かれているとも、単に中途半端な予想を示しただけだともとれる。Rowe & Grayによると、いくつかの問題は完全に定義されておらず、しかし十分な進歩がそれらの問題を"解決された"として考えられるようにはなっているという。

ともあれ重要な点は、当時の数学者のコミュニティ(数少ない研究リーダーはだいたい少数のヨーロッパ諸国に集中しており、また個人的な知り合い同士だったので、今と比べたら小さなものだった)によりヒルベルトのリストが速やかに受け入れられたことである。それら問題は綿密に研究され、1つでも解決できれば名声を得ることができた。

少なくとも、問題内容と同じくらいそのスタイルも影響力をもっていた。ヒルベルトは明晰さを要求し、アルゴリズム的な質問に対しては、実際のアルゴリズムではなく原理的な解決を、非専門家には分かりづらい直観によって導かれていた分野(シューベルト幾何および数え上げ幾何)についてはしっかりとした基礎付けを求めた。

こうした姿勢は多くの追随者によって引き継がれたが、同時に今なお疑義が呈されてもいる。30年後になっても、ヒルベルトは彼の立場をさらに先鋭化しただけだった。

ヒルベルトによる公示としての性格

問題リストおよびその議論の方法が影響力を与えるつもりで作られたのは明らかである。

ヒルベルトは帝国建設、計画的な熱意、はっきりとした方向付けと、学派の基礎をはっきりとさせることについてのドイツ学会の期待を感じずにはいられなかった。今では誰も「ヒルベルト学派」という語をそのような意味で用いることはないし、ヒルベルトの問題もフェリックス・クラインエルランゲン・プログラムのような受け取られかたをされることはなかった。クラインはヒルベルトの同僚だったが、ヒルベルトのリストと比べると全く規定的ではなかった。マイケル・アティヤはエルランゲン・プログラムを時期尚早のものと評した。対照的に、ヒルベルトの問題は専門家の時宜のはかりかたというものを示している。

現在「ヒルベルト学派」がなにがしかを意味するとすれば、それは恐らく作用素の理論と、数理物理におけるヒルベルトとクーランによる一連の著作を正典とするような流儀のことになるだろう。上で述べたように、ヒルベルトはリストの中でスペクトル理論についての問題を直接には提起していない。そうすることはクライン流のやり方になっただろうとも言えるだろう。さらに、彼自身の代数学への主要な貢献であり、不変式論を研究していた頃からの関心の的であった可換環論(そのころはイデアル理論とよばれていた)にそれほどの重要性を与えなかったし、少なくとも表面上は、レオポルト・クロネッカーに立ち向かっていたゲオルク・カントールを助けるような教えを広めることもなかった(コンスタンス・リード英語版の伝記に伝えられるように、ヒルベルトはクロネッカーから多くを学んだが、彼の姿勢を嫌悪していた)。リストの先頭に集合論があげられていることからは多くを読み取ることができただろう。

古典的解析の一分野であり、純粋数学者なら誰でも知っているだろう複素関数論はかなり無視されている。リーマン予想以外に、ビーベルバッハ予想などのよい問が欠けている。ヒルベルトの戦略的な目標のうちには可換環論を複素関数論と同じ序列に上げることがあったが、これには50年かかることになった(そして、いまだに地位が入れ替わるまでには至っていない)。

ヒルベルトには幾人かの相談相手がいた。アドルフ・フルヴィッツヘルマン・ミンコフスキーはどちらも親しい友達で、彼に匹敵する知性の持ち主だった。彼は数の幾何学(問題18)と二次形式(問題11)についてのミンコフスキーの研究に賛意を送っている。フルヴィッツはリーマン面の理論を大きく前進させた。ヒルベルトは、発展の途上にあった類体論に関する自身の研究において、代数的整数論の幾何学的指針として関数体との類比を援用したが、これは問題9に反映されており、ある程度は問題12、問題21および問題22にもそれがみられる。1900年におけるほかのライバルといえばアンリ・ポアンカレぐらいだったが、問題16の後半は力学系に関するポアンカレ流の問である。1902年にはポアンカレ予想についても語った。

Remove ads

脚注

参考文献

関連項目

外部リンク

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads