Список на меѓуѕвездени и околуѕвездени молекули
список на статии на Викимедија From Wikipedia, the free encyclopedia
Remove ads
Ова е список на молекули кои се откриени во меѓуѕвездената средина и околуѕвездeните обвивки, групирани според бројот на составните атоми. Хемиската формула е наведена за секое забележано соединение, заедно за секој забележан јонизиран облик.
Заднина
Сите молекулите наведени во табелите се откриени преку астрономска спектроскопија . Нивните спектрални одлики се јавуваат затоа што молекулите или впиваат или оддаваат фотон на светлина кога преминуваат помеѓу две различни нивоа на молекуларната енергија. Енергијата (а со тоа и брановата должина ) на фотонот се совпаѓа со енергетската разлика помеѓу споменатите нивоа. Молекуларните електронски премини се случуваат кога еден од електроните на молекулата се движи помеѓу молекулските орбитали, создавајќи спектрална линија во ултравиолетовите, оптичките или блиску инфрацрвените делови од електромагнетниот спектар . Дополнително, вибрационен премин пренесува кванти на енергија на (или од) вибрациите на молекуларните врски, создавајќи записи во средното или далечното инфрацрвено подрачје. Молекулите од гасната фаза, исто така, имаат квантизирани вртежни нивоа, што доведува до премините да се случуваат при микробранови или радио бранови должини.[1]
Понекогаш преминот може да вклучува повеќе од еден од овие типови на нивоа на енергија, на пр. вртежно-вибрациската спектроскопија ги менува вртежното и вибрационото ниво на енергија. Повремено сите три се појавуваат заедно, како кај Филипсовиот опсег на C2 (двоатомски јаглерод), во кој електронскиот премин создава линија во блиската инфрацрвена светлина, која потоа се дели на неколку вибрациони појаси при истовремена промена на вибрационото ниво, што пак повторно ќе се поделат на вртежните гранки.[2]
Спектарот на одредена молекула е регулиран од правилата на квантната хемија и молекуларната симетрија. Некои молекули имаат едноставни спектри кои лесно се препознатливи, додека други (дури и некои мали молекули) имаат крајно сложени спектри со ток кој е распространет меѓу многу различни линии, што прави нивното забележување да биде посложено.[3] Заемодејството помеѓу атомските јадра и електроните понекогаш предизвикува дополнителна хиперфина структура на спектралните линии. Ако молекулата постои во повеќе изотополози (типови молекули кои содржат различни атомски изотопи), спектарот дополнително се усложнува со изотопското поместување.
Откривањето на нова меѓуѕвездена или околуѕвездена молекула побарува препознавање на соодветно астрономско тело каде постои веројатност за присуство на таа молекула, а потоа и негово набљудување со телескоп опремен со спектрограф кој работи на потребната бранова должина, со соодветна спектрална разделна моќ и чувствителност. Првата молекула откриена во меѓуѕвездената средина беше радикалот метилидин (CH•) во 1937 година, преку силниот електронски премин на 4300 ангстреми (во оптичката светлина).[4] Напредокот во астрономските инструменти доведе до зголемен број на нови откритија. Од 1950-тите па наваму, радиоастрономијата почнува да доминира при забележувањата на нови молекули, а и подмилиметарската астрономија, исто така, станува важна од 1990-тите.[3]
Списокот на откриени молекули е крајно пристрасен кон одредени типови молекули чие забележување е полесно па така на пр. радиоастрономијата е најчувствителна на мали линиски молекули со висок молекуларен дипол.[3] Најчеста молекула во универзумот е H2 ( молекуларен водород) која пак е целосно невидлива за радиотелескопите поради фактот што нема дипол;[3] неговите електронски премини се премногу енергични за оптичките телескопи, ова значи дека за забележувањето на молекулата H2 потребно е да се користи ултравиолетово набљудување со метеоролошка ракета.[5] Вибрационите линии често не се специфични за поединечна молекула, што овозможува да се препознае само општата класа. На пример, вибрационите линии на полицикличните ароматични јаглеводороди (ПАЈ) биле препознаени во 1984 година,[6] со што се утврдило дека оваа класа на молекули е многу честа појава во вселената,[7] но било потребно до 2021 година да се препознаат сите специфични ПАЈ преку нивните вртежни линии.[8][9]
Еден од најбогатите извори за откривање на меѓуѕвездени молекули е Стрелец B2 (Sgr B2), џиновски молекуларен облак во близина на центарот на Млечниот Пат. Околу половина од молекулите наведени во табелите за прв пат се пронајдени во Sgr B2, а повеќето и од другите молекули подоцна се откриени во истиот облак.[10] Богат извор на околуѕвездени молекули е CW Лав (позната и како IRC+10216), блиска јаглеродна ѕвезда, каде што се препознаени околу 50 молекули.[11] Не постои јасна граница помеѓу меѓуѕвездената и околуѕвездената средина, и од таа причина и двете се вклучени во табелите подолу.
Астрохемијата го вклучува и разбирањето за тоа како се образуваат овие молекули и го објаснува нивното изобилство. Крајно малата густина на меѓуѕвездената средина не е погодна за образување на молекули, што ги прави неефикасни вообичаените реакции во гасната фаза помеѓу неутралните единки (атоми или молекули). Многу области, исто така, имаат многу ниски температури (обично 10 келвини во молекуларен облак), што дополнително ги намалува стапките на реакција или пак постоење на високо ултравиолетово зрачни полиња, кои ги уништуваат молекулите преку фотохемијата.[12] Објаснувањето на забележаното изобилство на меѓуѕвездени молекули побарува пресметување на рамнотежата помеѓу стапките на формирање и уништување на молекулите со помош гасно-фазната јонска хемија (честопати предизвикана од космичките зраци), површинската хемија на космичката прашина, зрачниот пренос вклучувајќи го и меѓуѕвездено згаснување и сложени реакциони мрежи.[13]
Remove ads
Молекули
Во следниве табели се наведени молекулите ки биле забележани во меѓуѕвездената средина или околуѕвездениот материјал, групирани според бројот на делови атоми. Неутралните молекули и нивните молекуларни јони се подредени во одделни колони; доколку не постои запис во молекуларната колона, забележана е само јонскиот облик на молекулата. Ознаките (имињата на молекулите) се оние кои се користат во научната литература за нивниот опис и забележување; доколку не постои запис полето е оставено празно. Масата е изразена во атомски единици за маса. Деутериумските молекули, кои содржат најмалку еден атом на деутериум (2H), имаат малку поинакви маси и се наведени во посебна табела. Вкупниот број на посебни видови, вклучувајќи ги тука и јонизираните состојби, се назначени во секој од насловите.
Повеќето од молекулите кои се забележани се органски молекули. Единствената забележана неорганска молекула со пет или повеќе атоми е SiH4.[14] Молекулите со поголем број на атоми во својот состав го вклучуваат еден атом на јаглерод, без присуство на N−N или O−O врски.[14]

Двоатомски (43)

3 катјонот е еден од најзастапените јони во универзумот. За првпат е забележан во 1993 година.[56][57]
Триатомски (44)

Четириатомски (30)

Петатомски (20)

Шестатомски (16)

Седуматомски (13)

Осуматомски (13)
Деветатомски (10)
Десет или повеќе атоми (21)
Remove ads
Деутериумски молекули (22)
Овие молекули содржат еден или повеќе атоми на деутриум, потежок изотоп на водородот.
Непотврдени (13)
Доказите за постоењето на следниве молекули е запишана во научната литература, но нивното забележување е колебливо опишано од страна на авторите, или пак нивото забележување е оспорено од други истражувачи. Потребна е потврда од независни извори.
Remove ads
Поврзано
- Астрохемија
- Космичка прашина
- Дифузен меѓуѕвезден појас
- Списоци на молекули
- Молекуларна астрофизика
- Молекуларна спектроскопија
- Молекули во ѕвездите
- Полициклични ароматични јаглеводороди
- Толин
Наводи
Белешки
Надворешни врски
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads