Bulan

satelit semula jadi bumi From Wikipedia, the free encyclopedia

Bulan
Remove ads

Bulan (Jawi: بولن, kata sifat berkaitan: qamari قمري[nb 3]) ialah satelit semula jadi yang beredar mengelilingi Bumi, ia jasad kelima terbesar dalam Sistem Suria berdasarkan saiz relatifnya berbanding jasad perumahnya.[7] Saiz Bulan hanya satu perempat daripada saiz Bumi; ia dan beredar mengelilingi Bumi setiap 27.3 hari pada jarak purata 384,400 kilometer di bawah tarikan gravitinya. Bulan berputar segerak dengan Bumi dan sentiasa menunjukkan muka atau sisi dekatnya yang penuh dataran bekas letusan gunung berapi (mare) kelihatan gelap terletak di antara kawasan-kawasan tinggi kuno yang terang dan kawah-kawah yang menonjol.

Fakta Segera Designasi, Adjektif ...

Bulan ialah objek yang paling terang boleh dilihat di langit selepas Matahari. Walau bagaimanapun, bulan tidak mempunyai sumber cahaya dan hanya memantulkan cahaya Matahari. Ppermukaannya amat gelap dengan kepantulan yang sama dengan arang. Bulan mempunyai 1/4 garis pusat bumi bersamaan dengan 3,476 kilometer dengan kekuatan graviti hanya 0.16 = (1/6) graviti Bumi. Bulan ialah satelit yang kedua paling mampat selepas Io, sebuah satelit Musytari.

Bulan dipercayai terbentuk hampir 4.5 bilion tahun dahulu, tidak lama selepas pembentukan Bumi. Walaupun terdapat beberapa teori tentang asal-usulnya, penjelasan yang diterima sekarang ialah Bulan terbentuk daripada sisa hentaman Bumi dengan objek cakerawala. Bulan dipercayai berasal daripada asteroid bersaiz Marikh yang menghentam Bumi lalu berkecai. Teras asteroid itu terus menghentam Bumi, tetapi lapisan luar asteroid terpelanting dan terperangkap dalam orbit mengelilingi Bumi lalu membentuk Bulan. Teori ini berdasarkan isipadu bulan yang terlalu ringan berbanding isipadu Bumi, iaitu hanya 0.012 berbanding jisim Bumi. Di Bulan tidak terdapat udara ataupun air, hanya banyak kawah yang terhasil di permukaan bulan disebabkan oleh hentaman komet. Ketiadaan udara dan air di Bulan menyebabkan hakisan tidak berlaku dan ada antara kawah Bulan yang berusia berjuta tahun dahulu dan masih utuh. Antara kawah terbesar di Bulan ialah Kawah Clavius yang bergaris pusat 230 kilometer dan sedalam 3.6 km. Ketiadaan udara juga menyebabkan tiada bunyi yang kedengaran di Bulan.

Penonjolan Bulan di langit dan fasa kitarannya yang tetap menjadikan Bulan sebuah pengaruh penting terhadap bahasa, takwim, seni dan mitologi umat manusia semenjak zaman kuno lagi. Pengaruh graviti Bulan mencetuskan ombak laut dan kepanjangan hari yang halus. Kejauhan orbit Bulan pada masa kini yang lebih kurang 30 kali diameter Bumi membuatnya kelihatan hampir sama besar dengan Matahari, dan membolehkannya hampir persis menudung Matahari sewaktu gerhana matahari. Kesamaan saiz yang kelihatan ini hanya kebetulan. Kejauhan lelurus Bulan dari Bumi sentiasa bertambah dan kini berada pada kadar 3.82 ± 0.07sm setiap tahun kendatipun kadar ini tidak malar.[8]

Remove ads

Asal

Kebanyakan bulan dipercayai terbentuk daripada runtuhan kawasan (collapsing region) cakera protoplanet yang sama seperti planet utama. Bagaimanapun, terdapat banyak pengecualian dan variasi kepada model pembentukan bulan piawai ini diketahui atau dikemukakan. Beberapa bulan dipercayai objek asing yang ditawan, serpihan bulan lebih besar berkecai oleh hentaman kuat, atau (dalam kes Bulan Bumi) sebahagian planet itu sendiri tercampak ke orbit oleh hentaman yang kuat. Oleh kerana kebanyakan bulan hanya diketahui melalui pemerhatian jarak jauh melalui probe atau teleskop, kebanyakan teori mengenai mereka tidak begitu jelas.

Remove ads

Ciri-ciri fizikal

Kebanyakan satelit-satelit semulajadi atau "bulan" dalam sistem suria terikat pasang surut (tidal locking) kepada planet-planet utama yang dekat; bulan Hyperion yang berdekatan planet Zuhal terkecuali kerana putarannya mengelilingi Zuhal lilau akibat pelbagai pengaruh luar. Bulan-bulan ini tidak mempunyai satelit sendiri; kesan pasang-surut planet utama menjadikan orbit sekeliling tidak stabil. Bagaimanapun, beberapa bulan berkongsi titik Lagrange (contohnya bulan-bulan Zuhal, Tethys dan Dione).

Jumpaan baru mengenai bulan Ida asteroid Dactyl mengesahkan bahawa sesetengah asteroid turut mempunyai bulan asteroid. Sesetengahnya, seperti 90 Antiope, merupakan asteroid berkembar dengan dua komponen sama besar.

Thumb
Struktur fizikal Bulan

Struktur dalaman

Maklumat lanjut Compound, Formula ...

Bulan ialah sebuah objek planet terbeza: ia memiliki kerak, mantel dan teras. Bulan mempunyai teras dalaman pepajal dengan jejari sepanjang 240 km yang kaya dengan besi dan teras dalaman bendalir dengan jejari lebih kurang 300 km. Teras diselimuti lapisan lebur separa yang mempunyai jejari sepanjang 500 km.[10] Difikirkan bahawa struktur ini terbina melalui penghabluran berperingkat sebuah lautan magma qamari sejurus selepas pembentukan Bulan 4.5 bilion tahun yang lampau.[11] Panghabluran lautan magma ini akan menimbulkan mantel mafik daripada pemendakan mineral-mineral olivin, klinopiroksen, dan ortopiroksena yang tenggelam; selepas lebih kurang tiga suku lautan magma itu menjadi hablur, mineral plagioklas yang kurang mampat dapat terbentuk dan terapung menjadi kerak di bahagian atas.[12] Cecair-cecair terakhir menjadi hablur tertindih di antara kerak dan mantel dengan kehadiran banyak unsur-unsur yang tidak serasi dan yang mengeluarkan haba.[1] Sejajar dengan ini, pemetaan geokimia dari orbit menunjukkan bahawa kerak terbina kebanyakannya daripada anortosit,[13] dan sampel lava batu bulan, yang meletus di permukaan qamari disebabkan peleburan separa mantel, mengiakan rencaman mantel mafik, yang mengandungi lebih banyak besi berbanding Bumi.[1] Kajian geofizik menyarankan bahawa ketebalan kerak purata ~50 km.[1]

Bulan juga merupakan yang kedua mampat selepas Io.[14] Walau bagaimanapun, teras dalaman Bulan itu kecil, dengan jejari sepanjang lebih kurang 350 km atau kurang.[1] Angka ini hanya ~20% saiz Bulan, berbanding dengan nisbah ~50% bagi badan-badan bumian yang lain[[[Wikipedia:Penjelasan|Penjelasan diperlukan]]]. Kandungannya tidak berapa jelas; kebarangkalian ia terdiri daripada besi logam dan pancalogamnya dengan sedikit belerang dan nikel; analisis putaran boleh ubah masa Bulan menunjukkan bahawa ia sekurang-kurangnya lebur separa.[15]

Geologi permukaan

Thumb
Sisi jauh bulan.
Thumb
Sisi jauh bulan yang tiada mare gelap.[16]
Thumb
Topografi Bulan

Topografi Bulan diukur dengan menggunakan altimetri laser dan analisis stereo imej.[17] Ciri yang paling jelas ialah Lembangan Kutub Selatan-Aitken yang amat besar dan terletak di sisi jauh Bulan, ia kawah terbesar di Bulan dan juga kawah terbesar yang diketahui di dalam Sistem Suria.[18][19] Dasar kawah tersebut aras tinggi yang paling rendah di Bulan dengan kedalaman sebanyak 13 kilometer.[18][20] Aras yang paling tinggi terletak pada timur laut lembangan ini, dan ada yang menyarankan bahawa kawasan ini mungkin ditebalkan oleh hentaman sendeng yang menimbulkan Kutub Selatan - Aitken.[21] Lembangan-lembangan hentaman lain, seperti Mare Imbrium, Mare Serenitatis, Mare Crisium, Mare Smythii dan Mare Orientale, juga memiliki aras rendah dan sembir yang ditinggikan.[18] Secara puratanya, aras permukaan sisi jauh Bulan lebih tinggi sebanyak 1.9 km daripada sisi dekatnya.[1]


Remove ads

Kesan kepada Bumi

Pasang surut air

Jarak antara Bumi dengan Bulan pada tempoh-tempoh tertentu mempengaruhi kadar dan tahap kekuatan daya tarik graviti Bulan pada salah satu sisi Bumi terhadap sisi lainnya sehingga ternampak tonjol pada lautan meninggi turun atau pasang surut.[22] Tonjolan ini bergerak bersama permukaan Bumi lebih cepat daripada pergerakan Bulan, yang berputar mengelilingi Bumi sekali sehari sebagaimana Bulan berputar pada sumbunya.[22] Pasang surut juga dipengaruhi oleh efek lainnya, di antaranya gaya gesek air terhadap sumbu rotasi Bumi melalui lantai lautan, inersia pergerakan air, basin samudra yang mengalami pendangkalan, dan osilasi antara basin samudra berbeda.[23] Daya tarik graviti Matahari terhadap lautan Bumi dikira hampir setengah dari daya tarik graviti Bulan, dan graviti kedua-dua jasada langit ini berperanan penting dalam menyebabkan pasang surut perbani dan musim semi.[22]

Interaksi graviti antara Bulan dan tonjolan di sekitar Bulan berfungsi sebagai torsi pada pusingan Bumi yang menguras momentum sudut dan tenaga kinetik hasil perputaran Bumi.[22][24] Akibatnya, momentum sudut disertakan ke orbit Bulan, yang mempercepat rotasinya dan menyebabkan Bulan naik ke orbit yang lebih tinggi dan dengan periode yang lebih lama. Oleh sebab itu, jarak antara Bumi dengan Bulan juga akan meningkat, dan perputaran Bumi akan melambat.[24] Pengukuran dengan kaedah eksperimen rentang Bulan menggunakan reflektor laser yang dilakukan dalam misi Apollo menemukan bahawa jarak Bulan ke Bumi meningkat sekitar 38 mm setiap tahun[25] (meskipun angka ini hanya 0,10 ppb/tahun dari radius orbit Bulan). Jam atom juga menunjukkan bahawa tempoh sehari di Bumi meningkat sekitar 15 mikrosaat setahun,[26] yang secara perlahan-lahan memperpanjang waktu UTC yang disesuaikan oleh saat lompat. Tarikan pasang surut Bulan akan terus berlanjut sampai perputaran Bumi dan zaman orbit Bulan sesuai. Namun, Matahari akan berubah menjadi gergasi merah menelan musnah Bumi jauh sebelum hal tersebut boleh terjadi.[27][28]

Permukaan Bulan juga mengalami pasang surut dengan amplitud ~10 cm, yang berlangsung selama 27 hari lebih. Fenomena ini disebabkan oleh dua hal, yakni kerana Bulan dan Bumi berada pada putaran sinkron, dan berbagai hal yang disebabkan oleh Matahari.[24] Komponen Bumi yang diinduksi terbentuk kerana librasi yang disebabkan sifat orbit Bulan; jika orbit Bulan berbentuk bulat sempurna, maka yang akan muncul hanyalah pasang surut suria.[24] Librasi juga mengubah sudut penampakan Bulan, yang menyebabkan sekitar 59% permukaan Bulan terlihat dari Bumi.[29] Efek kumulatif dari fenomena pasang surut memicu terjadinya gempa bulan. Gempa bulan ini lebih jarang terjadi dan lebih lemah kekuatannya daripada gempa bumi, meskipun gempa ini dapat bertahan hingga satu jam kerana ketiadaan air yang berfungsi sebagai peredam getaran seismik. Fenomena ini ditemukan secara tidak disengajakan dari seismometer dipasangkan para angkasawan misi-misi Apollo dari tahun 1969 hingga 1972.[30]

Terdapat penemuan terbaharu yang difahamkan para saintis bahawa peredaran Bulan mengelilingi Bumi ada membantu mengekalkan medan magnet Bumi.[31]

Gerhana

Thumb
Bulan bergerak di hadapan Matahari, dari kapal angkasa lepas STEREO-B.[32]
Dari Bumi, saiz Bulan dan Matahari kelihatan sama. Dari satelit yang orbitnya mengekori Bumi, Bulan boleh kelihatan lebih kecil daripada Matahari.
Thumb
Apabila dikurangkan skala Bumi kepada saiz bola jaring, saiz Bulan lebih kurang saiz bola tenis. Orbit Bulan sekait dengan garisan menjaring 3-titik gelanggang bola jaring. Jika lantai diumpamakan satah gerhana atau satah ekliptik, orbit Bulan mencapai ketinggian maksimum dari satah ini yang sama panjangnya raket tenis. Gerhana hanya berlaku apabila laluan Bulan melintasi ekliptik agar Matahari-Bulan-Bumi, atau Matahari-Bumi-Bulan, selari.

Gerhana hanya berlaku apabila Matahari, Bumi dan Bulan semuanya selari dalam garisan lurus (disebut "sizigi"). Gerhana matahari berlaku pada waktu bulan purnama, apabila Bulan berada di antara Matahari dan Bumi. Saiz Bulan nampaknya sama dengan saiz Matahari, dengan kedua-duanya dilihat dekat dengan kelebaran sebanyak setengah darjah. Matahari lebih besar daripada Bulan akan tetapi kejauhannya yang amat menyebabkan saiznya kelihatan hampir sama dengan saiz Bulan yang lebih kecil dan lebih hampir dengan Bumi apabila dilihat dari Bumi.

Perbezaan saiz yang tampaknya berubah, yang disebabkan orbit yang tidak betul-betul bulat, juga agak sama mahupun perbezaan ini mengikut kitaran yang berlainan. Keadaan ini membolehkan kewujudan gerhana matahari jenis gerhana penuh (Bulan kelihatan lebih besar daripada Matahari) dan gerhana anulus (Bulan kelihatan lebih kecil daripada Matahari).[33] Pada saat gerhana penuh, Bulan menutup cakera Matahari sepenuhnya dan korona matahari dapat dilihat dengan mata kasar. Oleh sebab jarak antara Bulan dan Bumi bertambah sedikit demi sedikit dengan pengedaran masa,[22] diameter sudut Bulan berkurangan. Hal ini bermaksud bahawa beratus juta tahun dahulu, Bulan akan sentiasa menyelubungi Matahari sepenuhnya semasa gerhana matahari, dan tiada gerhana anulus dapat dilihat. Sama juga, lebih kurang 600 juta tahun dari sekarang (sekiranya diameter sudut Matahari tidak berubah), Bulan tidak akan menyelubungi Matahari sepenuhnya dan hanya gerhana anulus akan berlaku.[34]

Remove ads

Pengamatan dan penjelajahan

Thumb
Peta Bulan karya Johannes Hevelius dari Selenographia (1647), peta pertama menampilkan zon librasi Bulan.

Pemerhatian dan pemahaman fasa-fasa berubahnya bentuk Bulan merintis awal perkembangan ilmu astronomi secara keseluruhannya.

Pengamatan awal

Pada abad ke-5 SM, para ahli falak Babilon telah mencatat kitaran Saros 18 tahunan pada gerhana bulan,[35] dan ahli-ahli falak India turut membuat penemuan sendiri menjelaskan mengenai fenomena elongasi Bulan.[36] Di China pula Shi Shen (abad ke-4 SM) memberi petunjuk yang terkait dengan cara memperkirakan gerhana matahari dan bulan.[37] Kemudian, bentuk fisik Bulan dan sumber cahaya bulan mulai diketahui. Filsuf Yunani kuno Anaxagoras (w. 428 SM) mengemukakan bahawa Matahari dan Bulan merupakan dua buah batu bulat raksasa yang menghasilkan cahaya.[38][39] Bangsa Tiongkok pada masa Dinasti Han percaya bahawa tenaga Bulan disamakan dengan qi, dan teori mereka mengenai pengaruh radiasi Bulan menjelaskan bahawa cahaya Bulan berasal dari Matahari. Jing Fang (78–37 SM) mencatat kebulatan Bulan untuk pertama kalinya.[40]

Pada abad ke-2 M, Lucianus menulis sebuah novel yang mengisahkan mengenai seorang pahlawan yang melakukan perjalanan ke Bulan yang berpenghuni. Pada tahun 499 M, astronom India Aryabhata menulis dalam bukunya Aryabhatiya bahawa cahaya Matahari menyebabkan Bulan tampak bersinar.[41] Ahli falak Ibnu Haitham (965-1039) mengungkapkan bahawa cahaya matahari tidak dipancarkan dari Bulan seperti sebuah cermin, tetapi cahaya tersebut dipancarkan ke segala arah dari setiap bahagian permukaan Bulan yang diterangi oleh cahaya matahari.[42] Shen Kuo (1031–1095) dari Dinasti Song mengemukakan sebuah alegori yang mengumpamakan fenomena bersinar dan memudarnya cahaya Bulan dengan sebuah bola yang berputar; saat dibubuhi dengan bubuk putih dan dilihat dari samping, maka akan terlihat bentuk sabit.[43]

Aristoteles dalam Gambaran alam semesta karya beliau percaya bahawa Bulan menandakan suatu batas antara unsur yang boleh berubah (bumi, air, udara, dan api) dengan bintang-bintang abadi aether, pemikiran falsafah berpengaruh yang mendominasi sains selama berabad-abad kemudian.[44] Pada abad ke-2 SM, Seleucus dari Seleucia mengemukakan teori bahawa pasang surut terjadi kerana daya tarik Bulan, dan ketinggian air pasang ditentukan oleh kedudukan relatif Bulan terhadap Matahari.[45] Pada abad yang sama, Aristarkhos membuat perkiraan ukuran dan jarak Bulan dari Bumi iaitu sekitar dua puluh kali radius Bumi. Teori ini kemudian dikembangkan oleh Ptolemy (90–168 M): ia berpendapat bahawa jarak rata-rata Bulan dari Bumi adalah 59 kali radius Bumi dan diameter 0,292 dari diameter Bumi. Angka ini hampir mendekati jarak dan diameter yang sebenarnya, yakni sekitar 60 untuk jarak dan 0,273 untuk diameter.[46] Archimedes (287–212 SM) merancang sebuah planetarium yang bisa menghitung laju pergerakan Bulan dan objek lainnya di Sistem Suria.[47]

Pada Abad Pertengahan, sebelum ditemukannya teleskop, Bulan diyakini sebagai sebuah bola batu, meskipun juga banyak yang percaya bahawa permukaan bulan "sangat halus".[48] Pada tahun 1609, Galileo Galilei untuk pertama kalinya membuat sebuah gambar teleskopis Bulan dalam bukunya yang berjudul [Sidereus Nuncius] Error: {{Lang}}: text has italic markup (help) dan menjelaskan bahawa permukaan Bulan tidak halus, tetapi memiliki pergunungan dan kawah. Pemetaan teleskopis Bulan terus berlanjut di sepanjang Abad Pertengahan; pada abad ke-17, Giovanni Battista Riccioli dan Francesco Maria Grimaldi berhasil menciptakan sebuah sistem penamaan geologi Bulan yang tetap digunakan hingga saat ini. [Mappa Selenographica] Error: {{Lang}}: text has italic markup (help) karya Wilhelm Beer dan Johann Heinrich Mädler (1834-1836), serta buku [Der Mond] Error: {{Lang}}: text has italic markup (help) (1837), merupakan buku pertama yang secara akurat menjelaskan penelitian mengenai Bulan dari sudut pandang trigonometri, termasuk ketinggian lebih dari seribu gunung di Bulan, dan memperkenalkan penelitian Bulan dengan tingkat akurasi yang bisa diukur oleh geografi Bumi.[49] Kawah Bulan pertama kali dicatat oleh Galileo, dan awalnya dianggap sebagai gunung berapi sampai tahun 1870-an, dan kemudian Richard Proctor menjelaskan bahawa kawah-kawah tersebut terbentuk akibat tubrukan.[29] Pendapatnya ini didukung oleh eksperimen yang dilakukan oleh geolog Grove Karl Gilbert pada tahun 1892, dan setelah perkembangan kajian-kajian pembandingan pada 1920-an hingga 1940-an,[50] stratigrafi Bulan menjadi cabang ilmu astrogeologi baru pada tahun 1950-an.[29]

Remove ads

Hubungan dengan manusia

Sifat peredaran bulan mengelilingi bumi yang tetap dalam suatu tempoh masa yang lebih kurang sama (sebanyak kira-kira 29-30 hari) menjadikan ia amat berguna menandakan peredaran masa dari mengambangnya "anak bulan" sehingga ia surut menggelap kepada suatu anak bulan yang baharu. "Bulan" dalam bahasa-bahasa Austronesia termasuk bahasa Melayu turut dilanjutkan pengungkapan kepada tempoh tersebut;[51][52] ungkapan datang bulan iaitu aturan tempoh kitaran haid dalam kiraan hari yang sama turut datang dari kefahaman ini[52][53] serta juga istilah perubatan menstruasi (meminjam Latin: menstruatio[54][55][56] berakar dari mensis, "bulan").[57]

Bulan telah menjadi tumpuan banyak pengkaryaan seni-seni tampak dan pertunjukan serta sastera termasuk syair, prosa, dan muzik. Antara gambaran tertua mengenai jasad ini muncul dalam suatu ukiran batu berusia 5,000 tahun di Knowth, Ireland.[58][59]

Dalam kepercayaan

Ada tamadun-tamadun bersejarah menyembah Bulan sebagai suatu betara atau entiti supernatural lainnya misalnya dewa Cendera (atau Chandra) dalam mitologi Hindu, dewi Ratih di Jawa dan Bali, Tsukuyomi oleh orang Jepun, Diana oleh orang Rom dan Yunani, Coyolxāuhqui dalam kepercayaan Aztek, Mama Killa dalam kepercayaan Inka dan sebagainya.

Nabi Muhammad iaitu tokoh utama dalam agama Islam diceritakan mempunyai mukjizat yang membuktikan kenabian baginda di mana ada kejadian bulan terbelah kepada dua bahagian (Arab: انشقاق القمر) dengan izin Allah.[60]

Remove ads

Lihat juga

Nota-nota

  1. The maximum value is given based on scaling of the brightness from the value of −12.74 given for an equator to Moon-centre distance of 378 000 km in the NASA factsheet reference to the minimum Earth–Moon distance given there, after the latter is corrected for the Earth's equatorial radius of 6 378 km, giving 350 600 km. The minimum value (for a distant new Moon) is based on a similar scaling using the maximum Earth–Moon distance of 407 000 km (given in the factsheet) and by calculating the brightness of the earthshine onto such a new Moon. The brightness of the earthshine is [ Earth albedo × (Earth radius / Radius of Moon's orbit)2 ] relative to the direct solar illumination that occurs for a full Moon. (Earth albedo = 0.367; Earth radius = (polar radius × equatorial radius)½ = 6 367 km.)
  2. The range of angular size values given are based on simple scaling of the following values given in the fact sheet reference: at an Earth-equator to Moon-centre distance of 378 000 km, the angular size is 1896 arcseconds. The same fact sheet gives extreme Earth–Moon distances of 407 000 km and 357 000 km. For the maximum angular size, the minimum distance has to be corrected for the Earth's equatorial radius of 6 378 km, giving 350 600 km.
  3. serapan Arab: قَمَرِيّ, rumi: qamarīy terbitan kata dasar قَمَر qamar "bulan".[6]
Remove ads

Rujukan

Bacaan lanjut

Pautan luar

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads