အစက်ချမြှောက်လဒ်

From Wikipedia, the free encyclopedia

အစက်ချမြှောက်လဒ်
Remove ads

သင်္ချာတွင်၊ ဗှတ္တာ ၂ခု၏ ထပ်ခြင်းပြ ကိန်းလုံး (အင်္ဂလိပ်: scalar product) သို့မဟုတ် အစက်ချမြှောက်လဒ် (အင်္ဂလိပ်: dot product) ဆိုသည်မှာ ၎င်းဗှတ္တာတို့၏ အစိတ်အပိုင်း(component) ကိန်းလုံးများကို ယူမြှောက်လျက်၊
သမားရိုးကျ ယူကလစ်ဒ်ရပ်ဝန်းသဘောနှင့် ဆိုလျှင်၊ ထိုဗှတ္တာ၂ခု၏ ဘက်လှည့်ပုံ(orientation)တို့ -

  • အချင်းချင်း ထပ်တူကျနေလျှင် ကျသလောက် ပမာဏကြီးကာ
  • အချင်းချင်း ထောင့်မှန်ကျနေလျှင် (အမှတ်ချအိမ်အတွင်း သီးသန့်စံတိုင်များအတိုင်း ဗှတ္တာတို့ သီးသီးခြားခြား ဘက်လှည့်မှု ရှိနေလျှင်) သုညထုတ်ပေးပြီး
  • ဘက်လှည့်ချင်း ဆန့်ကျင်သလောက် အနုတ်ကိန်းနှင့် ထုတ်ပေးနေမည့်၊
Thumb
Illustration showing how to find the angle between vectors using the dot product

မြှောက်လဒ် ဖြစ်၏။

သာဓကအားဖြင့်
ဟူသည့် ဗှတ္တာနှင့်
ဟူသည့် ဗှတ္တာ တို့က
ယခု အမှတ်ချအိမ်အတွင်း၌ ထောင့်သန့်အစိပ်ညီ (orthonormal) အလွှားစိပ် (basis) တို့ဖြင့် တွဲစပ်‌ပေါ်လွင်သည် ဖြစ်သော်၊
၎င်း ဗှတ္တာ၂ခု၏ ထပ်ခြင်းပြ ကိန်းလုံး (scalar product) သို့မဟုတ် အစက်ချမြှောက်လဒ် (dot product) မှာ ဤသို့ ဖြစ်၏။[]

ဤတွင် သင်္ကေတမှာ ပေါင်းလဒ်သင်္ကေတ (summation) ဟု ခေါ်၍၊ နေရာ၌ ပါမည့် ကိန်းဂဏန်းမှာ တိုင်းကြောင်းအရေအတွက် ဖြစ်ပြီး ထို အရ ပေါင်းရမည့် ပေါင်းကိန်း အရေအတွက်မှာ ထို တိုင်းကြောင်းအရေအတွက် နှင်နှင်သာ ဖြစ်မည်။
အကယ်၍ စဉ်းစားကိုင်တွယ်နေသည့် ရပ်ဝန်း၏ သဘောသဘာဝအလျောက် သင်္ချာစကားဖြင့် စံအလွှားစိပ် တို့က ထောင့်သန့်အစိပ်ညီ မဖြစ်ခဲ့လျှင်၊ ဥပမာအားဖြင့် ထောင့်သန့် (orthogonal) သာ ဖြစ်လျက် အစိပ်ညီ (normal) မဖြစ်ခဲ့လျှင်လည်း၊ တွက်နည်းက ဤမျှ ရိုးစင်းတော့မည် မဟုတ်ဘဲ (0 နှင့် 1 တို့ချည်း မဟုတ်တော့သော) အတိုင်းဆတာအုံ၏ တာစကိန်းလုံးတို့ ပါဝင်လာပေဦးမည်။

သို့သော် ခပ်ရိုးစင်းစင်း သာဓကအားဖြင့် တိုင်းကြောင်း-၃ခုပါ (3-dimensional) သမားရိုးကျ ယူကလစ်ဒ် ရပ်ဝန်း (Euclidean space)အတွင်း၌ ဤသို့ ဖြစ်မည်။ သို့မဟုတ်

ထို့နောက် နှင့် ဟူသော ဗှတ္တာ၂ခု၏ အစက်ချမြှောက်လဒ်မှာ - ဟု ဖြစ်ပေတော့မည်။

ကို နှင့် အစက်ချမြှောက်လဒ် ပြန်ပြုကြည့်လျှင် ၎င်း၏ ကိုယ်ပြန်မြှောက်လဒ် (inner product) အဖြစ် - ထွက်ပေါ်ရရှိမည်။

Remove ads

အကိုးအကား

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads