P-adisch getal

Uit Wikipedia, de vrije encyclopedie

In de getaltheorie, een deelgebied van de wiskunde, vormen de -adische getallen voor elk priemgetal een uitbreiding van de rationale getallen geheel anders van aard dan de bekende uitbreidingen naar de reële- en de complexe getallen. In een -adische uitbreiding zijn de nieuwe elementen de equivalentieklassen van fundamentaalrijen in de -adische norm. De -adische getallen werden voor het eerst beschreven door Kurt Hensel in 1897. Zij spelen een belangrijke rol in de getaltheorie.

Getalverzamelingen

Natuurlijke getallen
Gehele getallen
Rationale getallen
Reële getallen
Complexe getallen
Quaternionen
p-adische getallen
Hyperreële getallen
Surreële getallen
Transfiniete getallen

Irrationale getallen
Algebraïsche getallen
Transcendente getallen
Imaginaire getallen

Deze uitbreiding is gebaseerd op een gegeneraliseerde absolute waarde. De introductie van -adische getallen werd vooral ingegeven door een poging om de ideeën en technieken van machtreeksen ook in de getaltheorie in te voeren. De invloed van -adische getallen strekt zich nu echter veel verder uit. Het onderzoeksgebied van -adische analyse biedt voor -adische talstelsels bijvoorbeeld een alternatieve vorm van wiskundige analyse.