Higgs-boson

elementærpartikkel From Wikipedia, the free encyclopedia

Higgs-boson
Remove ads

Et Higgs-boson er en elementærpartikkel postulert i 1964. Partikkelen er et skalarboson (et boson med spinn 0) som har masse, antakelig rundt 125 GeV/c²,[a] men ingen ladning. I juli 2012 ble det oppdaget en ny partikkel som kunne være Higgs-bosonet.[1] Dette ble senere bekreftet.

Thumb
En simulering som viser hvordan det forventes at Higgs-bosonet kan dannes gjennom en proton-proton-kollisjon i Large Hadron Collider. Higgs-bosonet henfaller til stråler av hadroner og elektroner (de gule linjene).

I partikkelfysikkens standardmodell forklarer den såkalte Higgs-mekanismen hvorfor elementærpartikler kan ha hvilemasse. Mekanismen forklarer massen som et resultat av partiklenes vekselvirkning med et allestedsnærværende kvantefelt med vakuumforventningsverdi ulik null, det såkalte Higgs-feltet. Higgs-feltet har som andre kvantefelt en assosiert partikkel som kan eksitere fra feltet, og denne er Higgs-bosonet. Higgs-bosonets eksistens bekrefter Higgs-mekanismen som igjen bekrefter standardmodellen.[2]

Elementærpartiklenes masse utgjør imidlertid bare en liten del, rundt 2 %, av massen til ordinær materie. Resten, rundt 98 %, kommer fra energi lagret i kraftfeltet til den sterke kjernekraften.[3]

Remove ads

Historie

Thumb
Peter Higgs ved Mathematisches Institut Oberwolfach (MFO) i 2009

Higgs-bosonet er oppkalt etter Peter Higgs (f. 1929) som først postulerte dets eksistens i en artikkel den 19. oktober 1964.[4]

Higgs' artikkel var en av tre uavhengige artikler som ble trykket i Physical Review Letters i 1964. Alle tre la frem spontant symmetribrudd som løsningen på et av datidens store problem: hvordan bosoner kan ha (stabil) masse i en kvantefeltsteori ; de andre to artiklene var av François Englert og Robert Brout;[5] og av Gerald Guralnik, C. R. Hagen, og Tom Kibble (GHK).[6] De tre artiklene la en viktig grunnstein for standardmodellen som i stor grad ble utformet på 1970-tallet. To av de tre artiklene (av Higgs og GHK) inneholdt likninger for det hypotetiske feltet som siden har blitt kjent som Higgs-feltet, men det var bare Higgs som eksplisitt beskrev en massiv kvant (partikkel) forbundet med krumningen til det effektive potensialet som bestemmer feltet vakuumforventningsverdi, og det er denne som siden har blitt kjent som Higgs-bosonet.[7]

Higgs ga imidlertid intet anslag for partikkelens masse, og dermed hvordan man skulle lete etter den. Utover 1970-tallet forsøkte en rekke forskningsgrupper å beregne hvordan partikkelen vekselvirket med andre partikler og estimere grenser for hvilken masse partikkelen kunne ha. Systematiske nøytronspredningseksperimenter kunne i 1975 utelate at partikkelen hadde en masse på under 15 GeV/c².[8] Året før hadde en annen forskningsgruppe kommet til at massen ikke kunne ligge mellom 1,030 og 18,2 MeV/c².[9] Dermed var de enkleste mulighetene utelukket, og for å søke etter partikler med tyngre masse krevdes store og dyre partikkelakseleratorer.

Byggingen av Large Electron–Positron Collider (LEP) ved CERN i 1989 ga nye muligheter for å lete etter Higgs. Da LEP ble stengt ned i 2000 kunne masser opp til 114 GeV/c² utelukkes med 95 % konfidensintervall.[10] Etter stengingen av LEP ble Fermilabs Tevatron-akselerator det nye senteret for Higgs-leting. Masser mellom 156 og 177 GeV/c² ble utelukket og enkelte eldre resultater bekreftet, før fokus ble flyttet til byggingen av Large Hadron Collider (LHC) ved CERN.[7] LHC startet å produsere kollisjoner sent i 2009 og ved utgangen av 2011 kunne de første foreløpige analysene presenteres. De utelukket masser fra 127 GeV/c² og oppover, og ga hint om at en ny partikkel kunne befinne seg i området 124–126 GeV/c².[7][11] Det neste halve året fortsatte resultatene fra de to eksperimentene ATLAS og CMS å bekrefte en ny partikkel i dette masseområdet og 4. juli 2012 slapp CERN pressemeldingen om at det med 99,99995 % sannsynlighet («5 sigma») var oppdaget et nytt boson med en masse på omtrent 125 GeV/c².[12]

Remove ads

Noter

Type nummerering
  1. 1 GeV/c2 = 1,602 × 10-10 J/c2 = 1,602 × 10-10 kg(m/s)2/(3 × 108 m/s)2 ≈ 1,8 × 10-27 kg. Til sammenligning har hydrogenatomet en hvilemasse på rundt 0,939 GeV/c², så Higgs-bosonet er rundt 133 ganger så tungt som dette.

Referanser

Eksterne lenker

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads