Najlepsze pytania
Chronologia
Czat
Perspektywa

Zbiór pusty

zbiór niezawierający żadnych elementów Z Wikipedii, wolnej encyklopedii

Remove ads

Zbiór pustyzbiór niezawierający żadnych elementów[1]; zazwyczaj oznaczany symbolami rzadziej (niegdyś również: 0[2] lub Λ[3]). Zbiór, który nie jest pusty, tj. taki, który zawiera choćby jeden element, nazywany jest zbiorem niepustym[4].

W teorii mnogości Zermela-Fraenkla istnienie zbioru pustego jest zagwarantowane przez aksjomat zbioru pustego[5], a jego jedyność wynika z aksjomatu ekstensjonalności.

Remove ads

Własności

  • Zbiór pusty jest podzbiorem każdego zbioru:
bo zgodnie z definicją zachodzi
Prawdziwość powyższej implikacji wynika z reguły z fałszu wynika wszystko.
  • Suma dowolnego zbioru A i zbioru pustego jest równa zbiorowi A:
  • Iloczyn dowolnego zbioru A i zbioru pustego jest równy zbiorowi pustemu:
  • Iloczyn kartezjański dowolnego zbioru A i zbioru pustego jest równy zbiorowi pustemu:
  • Jedynym podzbiorem zbioru pustego jest zbiór pusty:
Oznacza to, że zbiór potęgowy zbioru pustego zawiera tylko jeden element, czyli zbiór pusty.
  • Moc zbioru pustego wynosi 0:
  • Dla dowolnego zbioru A zbiór pusty jest relacją w A zwaną relacją pustą.
  • Dla dowolnego zbioru A można określić funkcję zwaną funkcją pustą.
  • Jeżeli jest dowolną funkcją zdaniową, to prawdą jest, że:
  • Ponadto dla dowolnej funkcji zdaniowej i zbioru A, na którym jest ona określona, zachodzi warunek:
  • etc.
Remove ads

Zobacz też

Przypisy

Bibliografia

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads