Najlepsze pytania
Chronologia
Czat
Perspektywa

Punkt stacjonarny

pojęcie analizy matematycznej Z Wikipedii, wolnej encyklopedii

Punkt stacjonarny
Remove ads

Punkt stacjonarny, czasem: punkt krytyczny – punkt w dziedzinie funkcji rzeczywistej, w którym pierwsza pochodna przyjmuje wartość zero[1][2]. Punkt krytyczny bywa definiowany tak samo[3] lub szerzej – obejmując też te punkty, w których pochodna w ogóle nie istnieje[4].

Thumb
Niebieski wykres funkcji ma zaznaczone różne punkty stacjonarne: lokalne ekstrema obydwu rodzajów oraz (stacjonarny) punkt przegięcia w początku układu. Czerwony wykres przedstawia pochodną tej funkcji – w każdym z tych punktów się zeruje, a w przegięciu dodatkowo ma lokalne ekstremum.
Remove ads

Własności

Jeśli w tym punkcie istnieje druga pochodna, to jest on ekstremum lokalnym albo punktem przegięcia[1]. Jeśli jest dodatnia, to funkcja ma minimum lokalne; jeżeli istnieje i jest ujemna, funkcja ma maksimum lokalne. Są to warunki wystarczające dla istnienia ekstremów w punkcie stacjonarnym.

Dla funkcji wielu zmiennych w punkcie krytycznym zerują się pochodne cząstkowe po wszystkich zmiennych, czyli jest to miejsce zerowe gradientu[3].

Remove ads

Przypisy

Bibliografia

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads