Najlepsze pytania
Chronologia
Czat
Perspektywa
Punkt przegięcia
typ punktu na krzywej i w dziedzinie funkcji zmiennej rzeczywistej Z Wikipedii, wolnej encyklopedii
Remove ads
Punkt przegięcia – wieloznaczne pojęcie matematyczne używane w analizie i geometrii, konkretniej analizie rzeczywistej i planimetrii. W obu tych działach punkty przegięcia są definiowane różnie i nierównoważnie:
- dla funkcji rzeczywistej o zmiennej rzeczywistej jest to pewien punkt w jej dziedzinie lub na wykresie. Zachodzi w nim zmiana wypukłości, tj. po jednej stronie przegięcia funkcja jest wypukła, a po drugiej – wklęsła[1][2]. Ta definicja jest niejednoznaczna przez różne użycie nazw „wypukłość” i „wklęsłość”; oprócz tego bywa zawężana dodatkowymi warunkami na zachowanie funkcji w tym miejscu. Przy niektórych z tych zawężeń – oraz innych definicjach, nieodwołujących się do wypukłości – punkt przegięcia wykresu staje się szczególnym przypadkiem sensu geometrycznego:
- dla ogólnych krzywych płaskich punkt przegięcia to taki, w którym istnieje styczna i „przechodzi” ona z jednej strony krzywej na drugą[3][4]. W sensie ścisłym i węższym[5]: w pewnym sąsiedztwie przegięcia krzywa zawiera się we wnętrzu kątów wierzchołkowych utworzonych przez styczną i normalną[6]. Można to też formalizować przez zmianę znaku krzywizny[7], choć wymaga to innych założeń o własnościach krzywej[potrzebny przypis].

Oprócz tego znaczenia z pierwszej grupy mają swoje warunki wystarczające jak:
- ekstremum pierwszej pochodnej we wnętrzu dziedziny[8],
- zmiana znaku drugiej pochodnej[9][10],
- zmiana znaku pewnych wyrażeń z pierwszą lub drugą pochodną w przegięciu,
- zerowanie się pochodnych kolejnych rzędów między pierwszym a pewnym rzędem nieparzystym, dla którego wartość pochodnej jest niezerowa[11][12]:
Kryteria te istnieją dzięki twierdzeniom o różniczkowalnych funkcjach wypukłych i wklęsłych. Przy pewnym zawężeniu pojęć te warunki wystarczające stają się równoważnymi; bywają wręcz używane jako definicje[11].
Pojęcie to wprowadził do matematyki prawdopodobnie Gilles de Roberval; posłużył się nim w 1636 roku, w liście do Pierre’a Fermata. O przegięciach pod innymi nazwami wspominali potem między innymi Gottfried Wilhelm Leibniz i Isaac Newton[13].
Remove ads
Przegięcia funkcji rzeczywistych
Podsumowanie
Perspektywa




Szeroka definicja przez wypukłość
Niech będzie funkcją zmiennej rzeczywistej o wartościach rzeczywistych: gdzie Wtedy mówi się, że ma punkt przegięcia w wtedy i tylko wtedy, gdy w pewnym otoczeniu punktu jest po jednej z jego stron ściśle wypukła, a po drugiej – ściśle wklęsła[14]. Formalnie oznacza to, że istnieje liczba dla której funkcja
- a) jest ściśle wklęsła na przedziale i ściśle wypukła na przedziale
- b) odwrotnie – jest ona ściśle wypukła na i ściśle wklęsła na
Wypukłość i wklęsłość są definiowane różnie – i nierównoważnie – przez różnych autorów. W ogólności funkcja
- jest ściśle wklęsła na przedziale wtedy i tylko wtedy, gdy jest ciągła na przedziale i:
- lub (równoważna definicja[potrzebny przypis]):
- Podobnie funkcja jest ściśle wypukła na tym przedziale wtedy i tylko wtedy, gdy jest ciągła na tym przedziale i:
- lub (równoważna definicja):
Inne definicje

Niektórzy matematycy definiują punkty przegięcia funkcji przez wypukłość i wklęsłość w sąsiedztwie, ale określone inaczej – za pomocą stycznych[1][15]. Wymaga to wzmocnienia założenia ciągłości o różniczkowalność[16]. Zdarza się też dodatkowy wymóg, by w tym sąsiedztwie przegięcia istniała także druga pochodna i to ciągła[17]; takie funkcje bywają nazywane klasą .
Nierzadko zakłada się też dodatkowe własności funkcji w samym punkcie jak:
- określoność w tym punkcie[14] (przyjmowanie w nim jakiejś wartości: );
- ciągłość[b]:
- istnienie w nim pochodnych jednostronnych spełniających pewne nierówności[2];
- istnienie w nim stycznej[18], czyli spełnianie jednego z dwóch warunków[19]:
- istnienie pochodnej właściwej lub niewłaściwej (tj. nieskończonej)[20]:
- istnienie jednostronnych pochodnych niewłaściwych:
- różniczkowalność[16] – istnienie pochodnej właściwej (tj. skończonej):
- istnienie drugiej pochodnej (podwójna różniczkowalność) i jej ciągłość[17][21]:
Czasem przegięcie funkcji jest definiowane bez wypukłości ani wklęsłości. Niektórzy odwołują się do własności związanych ze styczną w tym punkcie
- nieformalnie przegięcie to punkt przecinania stycznej[21]. To znaczenie obejmuje też funkcje bez zmiany wypukłości, w dodatku z wykresem po jednej stronie prostej normalnej – wbrew ogólnej definicji przegięcia krzywej płaskiej. Tak się może dziać w wypadku stycznych pionowych[5].
- Wykluczenie stycznych pionowych oznacza, że w przegięciu istnieje pochodna skończona Wtedy przebijanie stycznej to formalnie zmiana znaku funkcji gdzie to funkcja opisująca styczną w punkcie [c][20]. Ta definicja również bywa zawężana[d]. Wszystkie takie przegięcia są zgodne z definicją geometryczną (dla ogólnej krzywej płaskiej); mimo to mogą one nie zmieniać wypukłości funkcji, co opisano dalej.
Zdarza się jeszcze inna definicja – pozwalająca rozstrzygnąć, czy punkt jest przegięciem, za pomocą samych pochodnych w tym punkcie. Wymaga to co najmniej trzykrotnej różniczkowalności (istnienia )[11].
Przykłady nierównoważności
Powyższe definicje nie są sobie równoważne – istnieją funkcje z punktami spełniającymi tylko niektóre z nich. Są przypadki zmiany wypukłości, w których[potrzebny przypis]:
- druga pochodna jest nieciągła;
- nie ma drugiej pochodnej – por. funkcja W punkcie istnieje przegięcie, bo pierwsza pochodna ma tam swoje minimum. Mimo to drugie pochodne jednostronne są tam różne więc obustronna druga pochodna nie istnieje;
- nie ma pierwszej pochodnej właściwej (skończonej) – por. pierwiastek kubiczny (sześcienny);
- nie ma nawet niewłaściwej pierwszej pochodnej;
- nie ma stycznej[22];
- nie ma ciągłości;
- nie ma wartości w tym punkcie; por.
Istnieją też funkcje z punktami spełniającymi „geometryczną” definicję przegięcia (przez styczną), ale bez zmiany wypukłości w tym punkcie[20][2]:
Ta funkcja jest różniczkowalna w zerze ale jej pochodna jest tam nieciągła i nawet nie ma granic jednostronnych[23]. Warunek ciągłości pochodnej nie usuwa jednak takich przypadków. Nie robi tego nawet postulat dwukrotnej różniczkowalności z ciągłą drugą pochodną Istnieją funkcje tej klasy, które również przecinają swoją styczną bez zmiany wypukłości w tym punkcie[24]:
Warunki konieczne i wystarczające


W przegięciach druga pochodna w ogólności nie musi istnieć, ale może przyjmować tylko zerową wartość [3][4]. Ten warunek konieczny nie jest jednak warunkiem wystarczającym:
- jeśli obie pochodne (pierwsza i druga) się zerują, to punkt może nie być przegięciem, lecz ekstremum[25] – por.
- jeśli druga pochodna się zeruje, a pierwsza nie, to punkt nie jest ekstremum, ale nie musi też być przegięciem; por. jedna z dalszych ilustracji.
Dla różnych klas funkcji można wskazać różne warunki wystarczające przegięcia:
- Jeśli funkcja ma obustronną pochodną w pewnym otoczeniu punktu wówczas warunkiem wystarczającym jest właściwe ekstremum lokalne pierwszej pochodnej w punkcie Ten warunek nie jest w ogólności konieczny – w sąsiedztwie przegięcia pochodna może w ogóle nie istnieć[26]. Mimo to, tak jak napisano wyżej, czasem zakłada się różniczkowalność badanej funkcji w całym przedziale – wprost lub przez definiowanie wypukłości za pomocą stycznych.
- Warunkiem wystarczającym istnienia punktu przegięcia jest też istnienie drugiej pochodnej funkcji równej zeru w punkcie oraz zmiana jej znaku w tym punkcie[4].
- Dla funkcji trzykrotnie różniczkowalnej warunkiem wystarczającym jest: W ogólności: jeśli w jakimś punkcie pierwsza nieznikająca (różna od zera) pochodna jest rzędu nieparzystego większego niż dwa, to jest tam przegięcie[27].
Rola przegięć
Poszukiwanie przegięć to jeden z klasycznych elementów badania przebiegu zmienności funkcji rzeczywistych[14] Punkty te mogą się pojawić w analizie pochodnych, począwszy od pierwszej – mogą się znaleźć wśród punktów krytycznych badanej funkcji Przegięcia – tak jak lokalne ekstrema – mogą występować zarówno wśród:
- punktów nieróżniczkowalności (braku pochodnej)[14]; przy czym taki punkt może być jednocześnie i ekstremum, i przegięciem[22];
- punktów stacjonarnych, czyli miejsc zerowych pierwszej pochodnej Takie punkty stacjonarne bez ekstremum w przypadku jednowymiarowym mogą należeć do przegięć. Bywają nazywane punktami siodłowymi[28], przy czym te ostatnie są też definiowane inaczej – geometrycznie, jako punkty zerowej krzywizny[29]. Wtedy punkty siodłowe nie są szczególnym przypadkiem różniczkowalnych przegięć, lecz ich uogólnieniem na wiele wymiarów.
W ogólności przegięcie wykresu nie ma ścisłego związku z pierwszą pochodną. Jeśli w takich punktach ona istnieje, to może mieć dowolny znak i być nieskończona (niewłaściwa), co ilustrują wykresy obok. Przegięcia są bliżej związane z dalszymi pochodnymi – przez różne warunki konieczne lub wystarczające, opisane wyżej.
Przegięcia wielomianów
Wielomian n-tego stopnia ma co najwyżej punktów przegięcia[potrzebny przypis]. Wynika to z połączenia trzech faktów:
- podwójna różniczkowalność wielomianów, dająca też ciągłą drugą pochodną (klasa ); przegięcia takich funkcji muszą spełniać warunek konieczny, jakim jest zerowanie się drugiej pochodnej
- wzór na pochodną wielomianu – dla pochodna zmniejsza stopień wielomianu o jeden. Przez to druga pochodna ma stopień niższy o dwa
- zasadnicze twierdzenie algebry mówi między innymi, że liczba pierwiastków rzeczywistych wielomianu rzeczywistego nie przekracza jego stopnia; tutaj liczba pierwiastków drugiej pochodnej nie przekracza
W szczególności funkcje kwadratowe – dla których – nie mają przegięć. Dotyczy to także wielomianów stopnia niższego niż dwa, czasem zwanych funkcjami liniowymi[potrzebny przypis].
Remove ads
Uogólnienie na inne krzywe płaskie
Pojęcie punktu przegięcia może też zostać uogólnione na krzywe płaskie niebędące wykresami funkcji, zwłaszcza na krzywe z punktami regularnymi, tj. o unikalnej stycznej. Tak jak wspomniano, tutaj również występują różne konwencje:
- nieformalnie – w punkcie przegięcia krzywa przechodzi z jednej strony stycznej na drugą[30];
- w sensie ścisłym i węższym[5]: w pewnym sąsiedztwie przegięcia krzywa zawiera się we wnętrzu kątów wierzchołkowych utworzonych przez styczną i normalną[6];
- inna ścisła definicja mówi o rozdzielaniu punktów o krzywiźnie dodatniej i ujemnej[7], co wymaga zerowania się krzywizny w tym punkcie[31]. Tak rozumiane przegięcie jest szczególnym, jednowymiarowym przypadkiem punktu siodłowego lub – przy innych definicjach – jego odpowiednikiem.
W miarę zbliżania się do punktu przegięcia promień krzywizny wykresu funkcji dwukrotnie różniczkowalnej rośnie do nieskończoności. Mówi się skrótowo, że jest on w punkcie przegięcia nieskończony. Oznacza to, że w otoczeniu punktu przegięcia krzywa (w szczególności np. wykres funkcji) jest lepiej przybliżana linią prostą niż łukiem okręgu[potrzebny przypis].
Remove ads
Zobacz też
Uwagi
- Taką definicję sugeruje Fichtenholz 1999 ↓, s. 264–266. Pisze wprost, że w punkcie przegięcia może nie być stycznej, co oznacza brak wymogu pochodnej, nawet niewłaściwej. Zarazem definiuje przegięcie jako punkt nie w dziedzinie, ale na krzywej, a krzywa bywa definiowana jako ciągły obraz przedziału liczbowego.
- to wielomian stopnia co najwyżej pierwszego, czasem zwany funkcją liniową.
- Różnica może być zapisana inaczej. Jeśli to:
- dla pewnego
Remove ads
Przypisy
Bibliografia
Linki zewnętrzne
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads