Top Qs
Linha do tempo
Chat
Contexto

Radeon HD 8000

Da Wikipédia, a enciclopédia livre

Remove ads

A série Radeon HD 8000 é uma família de GPUs de computador desenvolvida pela AMD. Inicialmente, havia rumores de que a AMD lançaria a família no segundo trimestre de 2013,[9][10][11] com as placas fabricadas em um processo de 28 nm e fazendo uso da arquitetura Graphics Core Next aprimorada.[12] No entanto, a série 8000 acabou sendo um rebadge OEM da série 7000 (embora Bonaire seja um chip baseado em GCN 2.0, portanto, de desenvolvimento mais recente).

Factos rápidos lançamento, codinome ...
Remove ads

Arquitetura

Resumir
Perspectiva

A série Radeon HD 7000 foi lançada em 2011 e marcou a mudança da AMD de VLIW (TeraScale) para arquitetura RISC/SIMD (Graphics Core Next). Os cartões high-end mainstream foram equipados com chips baseados em GCN, enquanto alguns dos mid-low-end eram apenas cartões renomeados baseados em TeraScale. Todos os chips baseados em GCN foram feitos usando o processo de 28 nm, tornando-se os primeiros chips a serem baseados nessa tecnologia. Os chips baseados em GCN para placas de desktop receberam o codinome Southern Islands, enquanto os móveis (novamente, apenas os baseados em GCN e não os renomeados) receberam o codinome Solar System.

Suporta a vários monitores

Os controladores de exibição on-die AMD Eyefinity foram introduzidos em setembro de 2009 na série Radeon HD 5000 e estão presentes em todos os produtos desde então.[13]

Aceleração de vídeo

Tanto o Unified Video Decoder (UVD) quanto o Video Coding Engine (VCE) estão presentes em todos os chips baseados em GCN (começando com a série GCN 1.0 HD 7000). Ambos são totalmente suportados pelo AMD Catalyst e pelo Driver de dispositivo gráfico gratuito e de código aberto#ATI/AMD.

OpenCL (API)

O OpenCL acelera muitos pacotes de software científicos contra a CPU até o fator 10 ou 100 e mais. OpenCL 1.0 a 1.2 são suportados para todos os chips com arquitetura Terascale e GCN. OpenCL 2.0 é compatível com GCN 2nd Gen. ou 1.2 e superior.[14] Para OpenCL 2.1 e 2.2, somente atualizações de driver são necessárias com placas compatíveis com OpenCL 2.0.

Vulkan (API)

A API Vulkan 1.0 é suportada por todos com com arquitetura GCN. Vulkan 1.1 (GCN 2nd Gen. ou 1.2 e superior) será suportado com drivers reais em 2018 (aqui apenas HD 8770).[14] Em drivers mais recentes, o Vulkan 1.1 no Windows e Linux é compatível com todas as GPUs baseadas na arquitetura GCN. Vulkan 1.2 está disponível com Adrenalin 20.1 e Linux Mesa 20.0 para GCN 2nd Gen. ou superior.

Remove ads

Tabela de chipset

Modelos de desktop

  • Graphics Core Next (GCN) suporta a API Mantle e a API Vulkan
  • Suporte OpenGL 4.5 para TeraScale 2 com AMD Crimson Beta (versão do driver 15.30 ou superior)
  • Suporte OpenGL 4.5 e Vulkan 1.0 para GCN 1.0 e superior com AMD Crimson 16.3 ou superior.[15][16]
  • Suporte Vulkan 1.1 para GCN 1.0 e superior com AMD Adrenalin 18.3.3 ou superior.[17]
Mais informação Modelo (Codinome), Lançamento ...
  1. Valores de boost (se disponíveis) são indicados abaixo do valor base em itálico.
  2. A taxa de preenchimento da textura é calculada como o número de Unidades de mapeamento de textura multiplicado pela velocidade básica (ou boost) do clock do núcleo.
  3. A taxa de preenchimento de pixel é calculada como o número de Unidades de saída de renderização multiplicado pela velocidade de clock base (ou boost) do núcleo.
  4. O desempenho de precisão é calculado a partir da velocidade básica (ou boost) do clock do núcleo com base em uma operação FMA.
  5. A taxa de transferência de dados do GDDR5 é quadruplo de seu clock nominal, em vez do dobro da memória DDR
  6. Shaders Unificados: Unidades de Mapeamento de Textura: Unidades de Saída de Renderização
  7. Falta codificador de vídeo de hardware

Modelos mobile

Mais informação Modelo (Codinome), Lançamento ...
  1. Valores de boost (se disponíveis) são indicados abaixo do valor base em itálico.
  2. A taxa de preenchimento da textura é calculada como o número de Unidades de mapeamento de textura multiplicado pela velocidade básica (ou boost) do clock do núcleo.
  3. A taxa de preenchimento de pixel é calculada como o número de Unidades de saída de renderização multiplicado pela velocidade de clock base (ou boost) do núcleo.
  4. O desempenho de precisão é calculado a partir da velocidade básica (ou boost) do clock do núcleo com base em uma operação FMA.
  5. A taxa de transferência de dados do GDDR5 é quadruplo de seu clock nominal, em vez do dobro da memória DDR
  6. Shaders Unificados: Unidades de Mapeamento de Textura: Unidades de Saída de Renderização

Modelos integrados

Mais informação Modelo (Codinome), Lançamento ...
  1. Shaders Unificados: Unidades de Mapeamento de Textura: Unidades de Saída de Renderização
  2. A taxa de preenchimento de pixel é calculada como o número de ROPs multiplicado pela velocidade base do clock do núcleo.
  3. A taxa de preenchimento da textura é calculada como o número de TMUs multiplicado pela velocidade básica do clock do núcleo.
  4. O desempenho de precisão é calculado a partir da velocidade básica (ou boost) do clock do núcleo com base em uma operação FMA.
  5. Não possui codificador de vídeo de hardware


Remove ads

Tabela de recursos Radeon

A tabela a seguir mostra os recursos das GPUs da AMD / ATI (consulte também: Lista de unidades de processamento gráfico da AMD).

Mais informação Nome da série de GPUs, Wonder ...
  1. A série Radeon 100 possui sombreadores de pixel programáveis, mas não é totalmente compatível com DirectX 8 ou Pixel Shader 1.0. Veja o artigo sobre Pixel shaders do R100.
  2. Os cartões baseados em R300, R400 e R500 não são totalmente compatíveis com OpenGL 2+, pois o hardware não oferece suporte a todos os tipos de texturas não-potência de dois (NPOT).
  3. A conformidade com OpenGL 4+ requer suporte a shaders FP64 e estes são emulados em alguns chips TeraScale usando hardware de 32 bits.
  4. O UVD e o VCE foram substituídos pelo Video Core Next (VCN) ASIC na APU Raven Ridge do Vega.
  5. Processamento de vídeo ASIC para técnica de interpolação de taxa de quadros de vídeo. No Windows funciona como um filtro DirectShow no seu player. No Linux, não há suporte por parte dos drivers e/ou da comunidade.
  6. Para reproduzir conteúdo de vídeo protegido, também é necessário suporte a cartão, sistema operacional, driver e aplicativo. Um monitor HDCP compatível também é necessário para isso. O HDCP é obrigatório para a saída de certos formatos de áudio, colocando restrições adicionais na configuração de multimídia.
  7. Mais monitores podem ser suportados com conexões DisplayPort nativas ou dividindo a resolução máxima entre vários monitores com conversores ativos.
  8. DRM (Direct Rendering Manager) é um componente do kernel do Linux. AMDgpu é o módulo do kernel do Linux. O suporte nesta tabela refere-se à versão mais atual.
Remove ads

Ver também

Referências

  1. «Mesamatrix». mesamatrix.net. Consultado em 29 de julho de 2023
  2. «RadeonFeature». X.Org Foundation. Consultado em 29 de julho de 2023
  3. JeGX (Maio de 2018). «AMD Adrenalin 18.4.1 Graphics Driver Released (OpenGL 4.6, Vulkan 1.1.70)». Geeks3D. Consultado em 29 de julho de 2023
  4. «AMD Open Source Driver for Vulkan». GPUOpen. Consultado em 20 de abril de 2018
  5. «AMD's 2012 - 2013 Client CPU/GPU/APU Roadmap Revealed». AnandTech. 2 de fevereiro de 2012. Consultado em 29 de julho de 2023
  6. «AMD Sea Islands HD 8850 and 8870 Specifications Leaked». 18 de setembro de 2012. Consultado em 29 de julho de 2023
  7. «AMD Eyefinity: FAQ». AMD. 17 de maio de 2011. Consultado em 20 de maio de 2023. Cópia arquivada em 31 de outubro de 2013
  8. «The Khronos Group». 15 de junho de 2022
  9. JeGX (10 de março de 2016). «AMD Crimson 16.3 Graphics Driver Available with Vulkan Support». Geeks3D. Consultado em 29 de julho de 2023
  10. «AMD Radeon HD 6900 (AMD Cayman) series graphics cards». HWlab. hw-lab.com. 19 de dezembro de 2010. Consultado em 22 de abril de 2023. Cópia arquivada em 23 de agosto de 2022. New VLIW4 architecture of stream processors allowed to save area of each SIMD by 10%, while performing the same compared to previous VLIW5 architecture
  11. «GPU Specs Database». TechPowerUp. Consultado em 22 de abril de 2023
  12. «NPOT Texture (OpenGL Wiki)». Khronos Group (em inglês). Consultado em 22 de abril de 2023
  13. «AMD Radeon Software Crimson Edition Beta». AMD. Consultado em 22 de abril de 2023
  14. «Mesamatrix». mesamatrix.net. Consultado em 22 de abril de 2023
  15. «RadeonFeature». X.Org Foundation. Consultado em 22 de abril de 2023
  16. «AMD Radeon RX 6800 XT Specs». TechPowerUp. Consultado em 22 de abril de 2023
  17. Killian, Zak (22 de março de 2017). «AMD publishes patches for Vega support on Linux». Tech Report. Consultado em 22 de abril de 2023
  18. Larabel, Michael (15 de setembro de 2020). «AMD Radeon Navi 2 / VCN 3.0 Supports AV1 Video Decoding». Phoronix. Consultado em 22 de abril de 2023
  19. Edmonds, Rich (4 de fevereiro de 2022). «ASUS Dual RX 6600 GPU review: Rock-solid 1080p gaming with impressive thermals». Windows Central (em inglês). Consultado em 22 de abril de 2023
  20. «Radeon's next-generation Vega architecture» (PDF). Radeon Technologies Group (AMD). Consultado em 22 de abril de 2023. Arquivado do original (PDF) em 6 de setembro de 2018
  21. Larabel, Michael (7 de dezembro de 2016). «The Best Features of the Linux 4.9 Kernel». Phoronix. Consultado em 22 de abril de 2023
Remove ads

Ligações externas

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads