Лучшие вопросы
Таймлайн
Чат
Перспективы

Восемнадцатиугольник

многоугольник с 18 вершинами Из Википедии, свободной энциклопедии

Восемнадцатиугольник
Remove ads

Восемнадцатиугольникмногоугольник с восемнадцатью сторонами[1].

Краткие факты Восемнадцатиугольник, Тип ...
Remove ads

Правильный восемнадцатиугольник

Суммиров вкратце
Перспектива

Правильный восемнадцатиугольник имеет символ Шлефли и может быть построен как полуправильный усечённый девятиугольник, , в котором перемежаются два типа сторон.

Построение

Имея сторон, правильный восемнадцатиугольник не может быть построен с помощью циркуля и линейки по теореме Гаусса — Ванцеля[2]. Однако его можно построить с помощью невсиса или трисекции угла с использованием томагавка.

Thumb
Точное построение восемнадцатиугольника, основанное на трисекции угла 120° с помощью томагавка. Анимация длится 1м 34с.

Следующее приближённое построение очень близко к построению девятиугольника, поскольку восемнадцатиугольник, как уже было сказано выше, может быть построен путём усечения девятиугольника. Данное построение возможно сделать с помощью только циркуля и линейки.

Thumb
Уменьшаем угол с помощью четырёх делений пополам и строим треть дуги с помощью приближённого деления угла между и .
Для этого проводим прямую через точки и , на этой прямой откладываем отрезок , равный , и строим на полученном отрезке точку , так что длина равна трети .
Теперь проводим окружность с центром в точке и находим пересечение этой окружности с дугой , получая точку .
Проводим прямую через точку и центр окружности . Эта прямая отсекает от исходной окружности дугу, примерно равную полной длины окружности.
Центральный угол правильного восемнадцатиугольника равен , а значит, погрешность построения составляет
Пример, иллюстрирующий точность построения: если взять окружность с радиусом км, абсолютная ошибка длины стороны будет примерно мм.
См. также Построение девятиугольника (на немецком)
В построении, приведённом на этом сайте, угол равен углу в приведённом построении восемнадцатиугольника.
Remove ads

Симметрия

Thumb
Группы симметрии правильного восемнадцатиугольника. Симметричные вершины окрашены в одинаковые цвета. Голубые зеркала проведены через вершины, фиолетовые — через стороны. Порядки групп вращений даны в центре.

Правильный восемнадцатиугольник имеет диэдральную группу порядка . Имеется типов подгрупп диэдральной симметрии: , (, ) и (, ), а также 6 циклических групп симметрии: (, ), (, ) и (, ).

На рисунке справа можно видеть подгрупп симметрии восемнадцатиугольника. Конвей использовал для их обозначения буквы вместе с порядком группы[3]. Полная симметрия правильной фигуры будет равна , а отсутствие симметрии (то есть тривиальная группа) отмечается как . Диэдральные симметрии делятся по тому, проходят ли их оси через вершины (используется буква , от «diagonal») или через середины сторон (используется буква , от «perpendicular»). Если же оси симметрии проходят и через вершины, и через середины сторон, используется буква . Циклические группы отмечаются буквой (от «gyration»).

Все эти подгруппы могут являться диэдральными группами неправильных восемнадцатиугольников, и лишь подгруппа не даёт свободы в этом отношении, если только стороны многоугольника не рассматриваются как имеющие направление, то есть как векторы.

Remove ads

Использование

Thumb
Правильные треугольник, девятиугольник и восемнадцатиугольник могут полностью окружить точку на плоскости, являясь одной из 17 комбинаций правильных многоугольников с таким свойством[4]. Однако эта комбинация не может быть использована для архимедова замощения плоскости — треугольник и девятиугольник имеют нечётное число сторон, ни одна из этих фигур не может быть окружена чередующимися другими двумя типами многоугольников.

Правильные восемнадцатиугольники могут замощать плоскость, оставляя вогнутые шестиугольные бреши. Другое замощение использует девятиугольники и невыпуклые восьмиугольники. Путём сокращения некоторых вершин первая мозаика может быть превращена в усечённую шестиугольную мозаику, а вторая — в усечённую треугольно-шестиугольную мозаику.

Thumb Thumb

Другие восемнадцатиугольники фигуры

Суммиров вкратце
Перспектива

Звёздчатые -угольники имеют символы . Существует два правильных звёздчатых многоугольника: и . Они используют те же самые вершины, но соединяют каждую пятую или седьмую вершину. Имеются также составные восемнадцатиугольники: эквивалентен (двум девятиугольникам), эквивалентен (трём шестиугольникам), и эквивалентны и (двум эннеаграммам), эквивалентен ( равносторонним треугольникам), и, наконец, эквивалентен (девять двуугольников).

Подробнее ...

Более глубокие усечения правильного многоугольника и правильной эннеаграммы дают равноугольные (вершинно-транзитивные) промежуточные восемнадцатиугольники с находящимися на равном расстоянии вершинами и двумя длинами сторон. Другие усечения дают двойное покрытие: [5].

Подробнее ...

Многоугольники Петри

Правильный восемнадцатиугольник является многоугольником Петри для ряда политопов, что показано в косоортогональных проекциях на плоскость Коксетера[англ.]:

Подробнее Восемнадцатиугольные многоугольники Петри, A17 ...
Remove ads

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads