Лучшие вопросы
Таймлайн
Чат
Перспективы

Квадратная пирамида

пирамида, у которой основание - квадрат Из Википедии, свободной энциклопедии

Квадратная пирамида
Remove ads

Квадратная пирамида — пирамида, имеющая квадратное основание. Если вершина пирамиды находится на перпендикуляре от центра квадрата, пирамида имеет симметрию C4v.

Краткие факты Квадратная пирамида, Тип ...
Thumb
Квадратная пирамида
Remove ads

Многогранник Джонсона (J1)

Суммиров вкратце
Перспектива

Если все боковые грани пирамиды — правильные треугольники, пирамида является одним из тел Джонсона (J1).

Тела Джонсона — это 92 строго выпуклых многогранника, имеющие правильные грани, но не являющиеся однородными (то есть не являются ни платоновыми телами (правильными многогранниками), ни архимедовыми, ни призмами, ни антипризмами).

В 1966 Норман Джонсон опубликовал список, в котором присутствовали все 92 тела, и дал им названия и номера. Он не доказал, что их только 92, но высказал гипотезу, что других нет. Виктор Залгаллер в 1969 году доказал, что список Джонсона полон[1]. Квадратная пирамида Джонсона может быть описана единственным параметром — длиной ребра a. Высота H (от середины квадрата до вершины пирамиды), площадь поверхности A (включая все пять граней) и объём V такой пирамиды равны:

Remove ads

Другие квадратные пирамиды

Другие квадратные (правильные) пирамиды имеют в качестве сторон равнобедренные треугольники.

Для таких пирамид, имеющих длину основания l и высоту h, площадь поверхности и объём вычисляются по формулам:

Remove ads

Связанные многогранники и соты

Подробнее Треугольная, Квадратная ...
Thumb Thumb Thumb
Правильный октаэдр можно считать квадратной бипирамидой, то есть две квадратные пирамиды, соединённые основаниями. Тетракисгексаэдр можно получить из куба путём наращения коротких квадратных пирамид в каждой грани. Квадратная усечённая пирамида.

Квадратная пирамида заполняет пространство (образует соты) с тетраэдром, усечённым кубом или кубооктаэдром[2]

Двойственный многогранник

Квадратная пирамида топологически является самодвойственным многогранником. Длины рёбер двойственной пирамиды отличаются из-за полярного преобразования.

Подробнее Двойственная квадратная пирамида, Развёртка двойственного многогранника ...

Топология

Квадратную пирамиду можно представить графом «Колесо» W5.

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads