Лучшие вопросы
Таймлайн
Чат
Перспективы

Призма (геометрия)

объёмное тело в геометрии Из Википедии, свободной энциклопедии

Призма (геометрия)
Remove ads

При́зма (-угольная) (лат. prisma от др.-греч. πρίσμα «нечто отпиленное») — многогранник, две грани которого являются конгруэнтными (равными) многоугольниками (-угольниками), лежащими в параллельных плоскостях, а остальные граней — параллелограммы, имеющие общие стороны с этими многоугольниками.

Краткие факты Множество однородных призм, Тип ...

Эти параллелограммы называются боковыми гранями призмы, а оставшиеся два многоугольника называются её основаниями.

Многоугольник, лежащий в основании, определяет название призмы: треугольник — треугольная призма, четырёхугольник — четырёхугольная; пятиугольник — пятиугольная (пентапризма) и т. д.

Призма является частным случаем цилиндра в общем смысле (некругового).

Remove ads

Элементы призмы

Название Определение Обозначения на чертеже Чертеж
Основания Две грани, являющиеся конгруэнтными многоугольниками, лежащими в параллельных друг другу плоскостях. , Thumb
Боковые грани Все грани, кроме оснований. Каждая боковая грань обязательно является параллелограммом. , , , ,
Боковая поверхность Поверхность всех граней по кругу, но без оснований.
Полная поверхность Поверхность обоих оснований и всех граней боковой поверхности.
Боковые рёбра Общие стороны боковых граней. , , , ,
Высота Отрезок, соединяющий плоскости, в которых лежат основания призмы и перпендикулярный этим плоскостям.
Диагональ Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.
Диагональная плоскость Плоскость, проходящая через боковое ребро призмы и диагональ основания.
Диагональное сечение Пересечение призмы и диагональной плоскости. В сечении образуется параллелограмм, в том числе его частные случаи — ромб, прямоугольник, квадрат.
Перпендикулярное (ортогональное) сечение Пересечение призмы и плоскости, перпендикулярной её боковому ребру.
Remove ads

Свойства призмы

  • Основания призмы являются равными многоугольниками.
  • Боковые грани призмы являются параллелограммами.
  • Боковые рёбра призмы параллельны и равны.
  • Объём призмы равен произведению её высоты на площадь основания:
  • Объём призмы с правильным n-угольным основанием равен
(здесь s — длина стороны многоугольника).
  • Площадь полной поверхности призмы равна сумме площади её боковой поверхности и удвоенной площади основания.
  • Площадь боковой поверхности произвольной призмы , где  — периметр перпендикулярного сечения,  — длина бокового ребра.
  • Площадь боковой поверхности прямой призмы , где  — периметр основания призмы,  — высота призмы.
  • Площадь боковой поверхности прямой призмы с правильным -угольным основанием равна
  • Перпендикулярное сечение перпендикулярно ко всем боковым рёбрам призмы.
  • Углы перпендикулярного сечения — это линейные углы двугранных углов при соответствующих боковых рёбрах.
  • Перпендикулярное сечение перпендикулярно ко всем боковым граням.
  • Двойственным многогранником прямой призмы является бипирамида.
Remove ads

Виды призм

Призма, основанием которой является параллелограмм, называется параллелепипедом.

Прямая призма — это призма, у которой боковые рёбра перпендикулярны плоскости основания, откуда следует, что все боковые грани являются прямоугольниками[1].

Прямая прямоугольная призма называется также прямоугольным параллелепипедом. Символ Шлефли такой призмы — { }×{ }×{ }.

Правильная призма — это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы — равные прямоугольники.

Правильная призма, боковые грани которой являются квадратами (высота которой равна стороне основания), является полуправильным многогранником. Символ Шлефли такой призмы — t{2,p}.
Thumb
Усечённая треугольная призма
Прямые призмы с правильными основаниями и одинаковыми длинами рёбер образуют одну из двух бесконечных последовательностей полуправильных многогранников (другую последовательность образуют антипризмы).

Наклонными называются призмы, рёбра которых не перпендикулярны плоскости основания.

Усечённая призма — многогранник, который отсекается от призмы непараллельной основанию плоскостью[2]. Усечённая призма сама призмой не является.

Диаграммы Шлегеля

Thumb
Треугольная
призма
Thumb
4-угольная
призма
Thumb
5-угольная
призма
Thumb
6-угольная
призма
Thumb
7-угольная
призма
Thumb
8-угольная
призма

Симметрия

Группой симметрии прямой -угольной призмы с правильным основанием является группа Dnh порядка 4n, за исключением куба, который имеет группу симметрии Oh[англ.] порядка 48, содержащую три версии D4h в качестве подгрупп. Группой вращений[англ.] является Dn порядка 2n, за исключением случая куба, для которого группой вращений является группа O[англ.] порядка 24, имеющая три версии D4 в качестве подгрупп.

Группа симметрии Dnh включает центральную симметрию в том и только в том случае, когда n чётно.

Remove ads

Обобщения

Суммиров вкратце
Перспектива

Призматические многогранники

Призматический многогранник — это обобщение призмы в пространствах размерности 4 и выше. -мерный призматический многогранник конструируется из двух (n − 1)-мерных многогранников, перенесённых в следующую размерность.

Элементы призматического n-мерного многогранника удваиваются из элементов (n − 1)-мерного многогранника, затем создаются новые элементы следующего уровня.

Возьмём -мерный многогранник с элементами (i-мерная грань, i = 0, …, n). Призматический ()-мерный многогранник будет иметь элементов размерности i (при , ).

По размерностям:

  • Берём многоугольник с вершинами и сторонами. Получим призму с 2 вершинами, 3 рёбрами и гранями.
  • Берём многогранник с v вершинами, e рёбрами и f гранями. Получаем (4-мерную) призму с 2v вершинами, рёбрами, гранями и ячейками.
  • Берём 4-мерный многогранник с v вершинами, e рёбрами, f гранями и c ячейками. Получаем (5-мерную) призму с 2v вершинами, рёбрами, (2-мерными) гранями, ячейками и гиперячейками.

Однородные призматические многогранники

Правильный -многогранник, представленный символом Шлефли {p, q, ..., t}, может образовать однородный призматический многогранник размерности (n + 1), представленный прямым произведением двух символов Шлефли: {p, q, ..., t}×{}.

По размерностям:

  • Призма из 0-мерного многогранника — это отрезок, представленный пустым символом Шлефли {}.
  • Призма из 1-мерного многогранника — это прямоугольник, полученный из двух отрезков. Эта призма представляется как произведение символов Шлефли {}×{}. Если призма является квадратом, запись можно сократить: {}×{} = {4}.
    • Пример: Квадрат, {}×{}, два параллельных отрезка, соединённые двумя другими отрезками, сторонами.
  • многоугольная призма — это 3-мерная призма, полученная из двух многоугольников (один получен параллельным переносом другого), которые связаны прямоугольниками. Из правильного многоугольника {p} можно получить однородную n-угольную призму, представленную произведением {p}×{}. Если p = 4, призма становится кубом: {4}×{} = {4, 3}.
  • 4-мерная призма, полученная из двух многогранников (один получен параллельным переносом другого), со связывающими 3-мерными призматическими ячейками. Из правильного многогранника {pq} можно получить однородную 4-мерную призму, представленную произведением {pq}×{}. Если многогранник является кубом и стороны призмы тоже кубы, призма превращается в тессеракт: {4, 3}×{} = {4, 3, 3}.
    • Пример: додекаэдральная призма[англ.], {5, 3}×{}, два параллельных додекаэдра, соединённых 12 пятиугольными призмами (сторонами).

Призматические многогранники более высоких размерностей также существуют как прямые произведения двух любых многогранников. Размерность призматического многогранника равна произведению размерностей элементов произведения. Первый пример такого произведения существует в 4-мерном пространстве и называется дуопризмами, которые получаются произведением двух многоугольников. Правильные дуопризмы представляются символом {p}×{q}.

Подробнее Многоугольник, Мозаика ...

Скрученная призма и антипризма

Скрученная призма — это невыпуклый призматический многогранник, полученный из однородной q-угольной путём деления боковых граней диагональю и вращения верхнего основания, обычно на угол радиан ( градусов), в направлении, при котором стороны становятся вогнутыми[3][4].

Скрученная призма не может быть разбита на тетраэдры без введения новых вершин. Простейший пример с треугольными основаниями называется многогранником Шёнхардта.

Скрученная призма топологически идентична антипризме, но имеет половину симметрий: Dn, [n,2]+, порядка 2n. Эту призму можно рассматривать как выпуклую антипризму, у которой удалены тетраэдры между парами треугольников.

Подробнее Треугольная, Четырёхугольные ...

Связанные многогранники и мозаики

Подробнее Многоугольник, Мозаика ...
Подробнее n, Название ...

Симметрии

Призмы топологически являются частью последовательности однородных усечённых многогранников с конфигурациями вершин (3.2n.2n) и [n,3].

Подробнее Варианты симметрии *n32 усечённых мозаик: 3.2n.2n, Симметрия*n32 [n,3] ...

Призмы топологически являются частью последовательности скошенных многогранников с вершинными фигурами (3.4.n.4) и мозаик на гиперболической плоскости. Эти вершинно транзитивные фигуры имеют (*n32) зеркальную симметрию[англ.].

Подробнее Варианты симметрии *n42 расширенных мозаик: 3.4.n.4, Симметрия*n32 [n,3] ...

Соединение многогранников

Существует 4 однородных соединения треугольных призм:

Соединение четырёх треугольных призм[англ.], соединение восьми треугольных призм[англ.], соединение десяти треугольных призм[англ.], соединение двенадцати треугольных призм[англ.].

Соты

Существует 9 однородных сот, включающих ячейки в виде треугольных призм:

Связанные многогранники

Треугольная призма является первым многогранником в ряду полуправильных многогранников[англ.]. Каждый последующий однородный многогранник содержит в качестве вершинной фигуры предыдущий многогранник. Торольд Госсет[англ.] идентифицировал эту серию в 1900 как содержащую все фасеты правильных многомерных многогранников, все симплексы и ортоплексы (правильные треугольники и квадраты для случая треугольных призм). В нотации Коксетера треугольная призма задаётся символом −121.

Подробнее k21[англ.] в пространстве размерности n, Пространство ...

Четырёхмерное пространство

Треугольная призма служит ячейкой во множестве четырёхмерных однородных 4-мерных многогранников[англ.], включая:

тетраэдральная призма[англ.]
node_13node3node2node_1
октаэдральная призма[англ.]
node_13node4node2node_1
кубооктаэдральная призма[англ.]
node3node_14node2node_1
икосаэдральная призма[англ.]
node_13node5node2node_1
икосододекаэдральная призма[англ.]
node3node_15node2node_1
усечённая додекаэдральная призма[англ.]
node3node_15node_12node_1
Thumb Thumb Thumb Thumb Thumb Thumb
ромбоикоси-
додекаэдральная призма
[англ.]
node_13node5node_12node_1
ромбокуб-
октаэдральная призма
[англ.]
node_13node4node_12node_1
усечённая кубическая призма[англ.]
node3node_14node_12node_1
плосконосая додекаэдральная призма[англ.]
node_h5node_h3node_h2node_1
n-угольная антипризматическая призма[англ.]
node_hnnode_h2xnode_h2node_1
Thumb Thumb Thumb Thumb Thumb
скошенный 5-ячейник[англ.]
node_13node3node_13node
скошено-усечённый 5-ячейник[англ.]
node_13node_13node_13node
обструганный 5-ячейник[англ.]
node_13node3node3node_1
струг-усечённый 5-ячейник[англ.]
node_13node_13node3node_1
скошенный тессеракт[англ.]
node_14node3node_13node
скошено-усечённый тессеракт[англ.]
node_14node_13node_13node
обструганный тессеракт[англ.]
node_14node3node3node_1
струг-усечённый тессеракт[англ.]
node_14node_13node3node_1
Thumb Thumb Thumb Thumb Thumb Thumb Thumb Thumb
скошенный 24-ячейник[англ.]
node_13node4node_13node
скошено-усечённый 24-ячейник[англ.]
node_13node_14node_13node
обструганный 24-ячейник[англ.]
node_13node4node3node_1
струг-усечённый 24-ячейник[англ.]
node_13node_14node3node_1
скошенный 120-ячейник[англ.]
node_15node3node_13node
скошено-усечённый 120-ячейник[англ.]
node_15node_13node_13node
обструганный 120-ячейник[англ.]
node_15node3node3node_1
струг-усечённый 120-ячейник[англ.]
node_15node_13node3node_1
Thumb Thumb Thumb Thumb Thumb Thumb Thumb Thumb
Remove ads

См. также

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads