Лучшие вопросы
Таймлайн
Чат
Перспективы

Разрешимая группа

Из Википедии, свободной энциклопедии

Remove ads

Разрешимая группа — группа, ряд коммутантов которой заканчивается на тривиальной группе.

Понятие возникло в теории Галуа в связи с вопросом о разрешимости алгебраических уравнений в радикалах: алгебраическое уравнение разрешимо в радикалах тогда и только тогда, когда его группа Галуа разрешима.

Эквивалентные определения

Суммиров вкратце
Перспектива

Разрешимая группа — группа , такая что убывающий ряд

в котором каждая следующая группа является коммутантом предыдущей, рано или поздно приводит к тривиальной подгруппе.

Можно доказать, что если  — нормальная подгруппа в , разрешима и факторгруппа разрешима, то разрешима. Следовательно, следующее определение эквивалентно первому:

Разрешимая группа — это группа, для которой существует хотя бы один субнормальный ряд, в котором факторгруппы абелевы. Это значит, что существует цепочка подгрупп , такая что является нормальной подгруппой , и  — абелева группа.

Remove ads

Свойства

Remove ads

Примеры

  • Все абелевы группы и все нильпотентные группы разрешимы.
  • Симметрическая группа является разрешимой тогда и только тогда, когда .
  • Группа невырожденных верхних треугольных матриц разрешима.
  • Свободная группа ранга больше единицы не является разрешимой.
  • Все группы порядка, меньшего чем 60, разрешимы. Неразрешимая группа наименьшего порядка — это знакопеременная группа порядка 60.

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads