Лучшие вопросы
Таймлайн
Чат
Перспективы
Распределение Коши
Из Википедии, свободной энциклопедии
Remove ads
Распределе́ние Коши́ в теории вероятностей (также называемое в физике распределе́нием Ло́ренца и распределе́нием Бре́йта — Ви́гнера) — класс абсолютно непрерывных распределений. Случайная величина, имеющая распределение Коши, является классическим примером величины, не имеющей математического ожидания и дисперсии.
Remove ads
Определение
Суммиров вкратце
Перспектива
Пусть распределение случайной величины задаётся плотностью , имеющей вид:
- ,
где
- — параметр сдвига;
- — параметр масштаба.
Тогда говорят, что имеет распределение Коши и пишут . Если и , то такое распределение называется станда́ртным распределением Коши.
Remove ads
Функция распределения
Суммиров вкратце
Перспектива
Функция распределения Коши имеет вид:
- .
Она строго возрастает и имеет обратную функцию:
Это позволяет генерировать выборку из распределения Коши с помощью метода обратного преобразования.
Remove ads
Моменты
Суммиров вкратце
Перспектива
Так как интеграл Лебега
не определён для , ни математическое ожидание (хотя интеграл 1-го момента в смысле главного значения равен: ), ни дисперсия, ни моменты старших порядков этого распределения не определены. Иногда говорят, что математическое ожидание не определено, а дисперсия бесконечна.
Другие свойства
- Распределение Коши бесконечно делимо.
- Распределение Коши устойчиво. В частности, выборочное среднее выборки из стандартного распределения Коши само имеет стандартное распределение Коши: если , то
Remove ads
Связь с другими распределениями
- Если , то
- .
- Если — независимые нормальные случайные величины, такие что , то
- Стандартное распределение Коши является частным случаем распределения Стьюдента:
- .
Remove ads
Появление в практических задачах
- Распределением Коши характеризуется длина отрезка, отсекаемого на оси абсцисс прямой, закреплённой в точке на оси ординат, если угол между прямой и осью ординат имеет равномерное распределение на интервале (−π; π) (то есть направление прямой изотропно на плоскости). По сути это означает следующее[1]:
Если , то (−), поэтому . В силу периодичности тангенса равномерность на интервале (−π/2; π/2) одновременно означает равномерность на интервале (−π; π).
- В физике распределением Коши (называемым также формой Лоренца) описываются профили равномерно уширенных спектральных линий.
- Распределение Коши описывает амплитудно-частотные характеристики линейных колебательных систем в окрестности резонансных частот.
Remove ads
Примечания
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads