Лучшие вопросы
Таймлайн
Чат
Перспективы

Точка Нагеля

точка пересечения отрезков, соединяющих вершины треугольника с точками касания противоположных сторон с соответствующими вневписанными Из Википедии, свободной энциклопедии

Точка Нагеля
Remove ads

Точка Нагеля — точка пересечения отрезков, соединяющих вершины треугольника с точками касания противоположных сторон с соответствующими вневписанными окружностями.

Краткие факты Точка Нагеля, Барицентрические координаты ...

Обычно обозначается .

Remove ads

Свойства

Thumb
Прямая Нагеля. инцентр,  — центроид,  — центр Шпикера,  — точка Нагеля.
  • Точка Нагеля лежит на одной прямой с инцентром и центроидом, при этом центроид делит отрезок между точкой Нагеля и инцентром в отношении 2 : 1. Эта прямая называется прямой Нагеля (см. рисунок).
  • Если точки , , таковы, что каждый из отрезков , и делит периметр треугольника пополам, то эти отрезки пересекаются в одной точке — точке Нагеля.
  • Точка Нагеля изотомически сопряжена точке Жергонна.
  • Точка Нагеля изогонально сопряжена с центром положительной гомотетии вписанной и описанной окружности (точка Веррьера).
  • Расстояние между ортоцентром и точкой Нагеля равно диаметру окружности Фурмана и равно
.
  • Половине этого расстояния равно расстояние между центром описанной окружности и инцентром[1].
  • Чевиану точки Нагеля в английской литературе иногда называют сплиттером (splitter) или делителем пополам периметра. К сплиттеру они относят и кливер треугольника.
  • Инцентр данного треугольника является точкой Нагеля треугольника, образованного его 3 средними линиями (серединного треугольника).[2][3]
  • Слабая точка в треугольнике (weak point) та, у которой может найтись близнец с помощью её ортогонального сопряжения за пределы треугольника. Например, инцентр, точка Нагеля и другие являются слабыми точками, ибо допускают получение аналогичных точек при их сопряжении за пределы треугольника.[4].

Треугольник Нагеля

* Треугольник Нагеля (см. рис. выше) для треугольника определяется вершинами , и , которые являются точками касания вневписанных окружностей треугольника и точка противоположна стороне , и т. д.

Свойства

  • Описанная вокруг треугольника окружность называется окружностью Мандарта (частный случай эллипса Мандарта).
  • Три прямые , и делят периметр пополам и пересекаются в одной точке Нагеля  — X(8).
  • Перпендикуляры, восстановленные в трех вершинах треугольника Нагеля к сторонам основного треугольника (то есть в точках касания вневписанных окружностей со сторонами основного треугольника), пересекаются в одной точке. Эта точка симметрична центру вписанной окружности относительно центра описанной окружности[5].
  • Анимацию построения точки Нагеля см. на рис.
Thumb
Анимация построения точки Нагеля
Remove ads

Замечание

Точка Нагеля относится к слабым точкам. Поэтому следует говорить не об одной, а о нескольких точках Нагеля. То есть, соединение других точек касания вневписанных окружностей с вершинами треугольника дает ещё три точки Нагеля.

История

Названа по имени Христиана Генриха фон Нагеля, впервые охарактеризовавшего её в статье 1836 г.

См. также

Примечания

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads