சமனிலி (கணிதம்)

From Wikipedia, the free encyclopedia

சமனிலி (கணிதம்)
Remove ads

கணிதத்தில் சமனிலி (inequality) என்பது வெவ்வேறான இரு அளவுகளுக்கு இடையேயான உறவாகும்.

Thumb
நேரியல் செயற்திட்டமிடலின் வாய்ப்பெளிமை மண்டலம், சமனிலிகளின் தொகுப்பொன்றால் வரையறுக்கப்படுகிறது

a என்பது b க்குச் சமமானதாக இல்லை என்பதைக் குறிக்கும் குறியீடு:

a என்பது b க்குச் சமமானதாக இல்லை என்பதை மட்டுமே, இக்குறியீடு காட்டுகிறது. இரண்டு மதிப்புகளில் எது பெரியது, எது சிறியது அல்லது அவை ஒப்பிடக் கூடியவையா போன்ற விவரங்களைத் தருவதில்லை.

எடுத்துக்கொள்ளப்பட்ட மதிப்புகள் முழு எண்கள் அல்லது மெய்யெண்கள் போன்ற வரிசைப்படுத்தப்பட்ட கணத்தின் உறுப்புகளாக இருந்தால், அவற்றின் அளவுகளை ஒப்பிட முடியும்.

  • a , bவிடச் சிறியது என்பதன் குறியீடு a < b .
  • a , bவிடப் பெரியது என்பதன் குறியீடு a > b .

இரண்டிலும் a , b க்குச் சமனானது இல்லை.

<, > இரண்டும் கண்டிப்பான சமனிலிகள் (strict inequalities) எனப்படும். a < b என்பதை a , bவிட கண்டிப்பாகச் சிறியது என்றும் வாசிக்கலாம்.

கண்டிப்பற்ற சமனிலிகள்:

  • a , bவிடச் சிறியது அல்லது சமம் என்பதன் குறியீடு ab .
  • a , bவிடப்பெரியது
அல்லது சமம் என்பதன் குறியீடு ab .

ஒரு மதிப்பை விட மற்றது மிகவும் அதிகமானது அல்லது சிறியது என்பதற்கான சமனிலிகள்:

  • a , bவிட அதிகளவில் சிறியது என்பதன் குறியீடு a b.
  • a , bவிட அதிகளவில் பெரியது என்பதன் குறியீடு a b.
Remove ads

பண்புகள்

கீழுள்ள பண்புகளில் கண்டிப்பற்ற சமனிலிகளுக்குப் பதிலாக கண்டிப்பான சமனிலிகளை இட்டாலும் அப்பண்புகள் உண்மையாக இருக்கும்.

கடப்பு

  • a, b, c எவையேனும் மூன்று மெய்யெண்கள் எனில்:
    • ab மற்றும் bc எனில், ac.
    • ab மற்றும் bc எனில், ac.
    • ab மற்றும் b > c எனில், a > c
    • a = b மற்றும் b > c எனில், a > c

மறுதலை

≤ , ≥ இரண்டும் ஒன்றுக்கொன்று மறுதலை உறவுகள்

  • a , b இரண்டும் ஏதேனும் இரு மெய்யெண்கள் எனில்:
    • ab எனில், ba.
    • ab எனில், ba.

கூட்டலும் கழித்தலும்

x < y எனில், x + a < y + a.

ஒரு சமனிலியின் இருபுறமும், ஒரு பொது மாறிலி c ஐக் கூட்டலாம் அல்லது கழிக்கலாம். அதனால் சமனிலியில் எந்தவொரு மாற்றமும் இராது.

  • a, b, c மூன்று மெய்யெண்கள்:
    • ab, எனில் a + cb + c மற்றும் acbc.
    • ab எனில், a + cb + c மற்றும் acbc.

அதாவது கூட்டலின் கீழ் மெய்யெண்களின் கணம் ஒரு வரிசைப்படுத்தப்பட்ட குலமாகும்.

பெருக்கலும் வகுத்தலும்

Thumb
x < y மற்றும் a > 0 எனில், ax < ay.
Thumb
x < y மற்றும் a < 0 எனில், ax > ay.

a, b , c ≠ 0 என்பவை மூன்று மெய்யெண்கள்.

  • c > 0 எனில் அதனைக் கொண்டு, ஒரு சமனிலியின் இருபுறமும் பெருக்குவதாலோ அல்லது வகுப்பதாலோ சமனிலியின் தன்மை மாறாது:
ab , c > 0 எனில், acbc மற்றும் a/cb/c.
ab , c > 0 எனில், acbc மற்றும் a/cb/c.
  • c < 0 எனில் அதனைக் கொண்டு, ஒரு சமனிலியின் இருபுறமும் பெருக்குவதால் அல்லது வகுப்பதால் சமனிலியின் தன்மை நேர்மாறாக மாறும்:
ab , c < 0 எனில், acbc மற்றும் a/cb/c.
ab , c < 0 எனில், acbc மற்றும் a/cb/c.

கூட்டல் நேர்மாறு

கூட்டல் நேர்மாறின் பண்புகளின்படி:

a , b இரு மெய்யெண்கள். சமனிலியின் இருபுறமும் எதிர்க் குறியிடல் சமனிலியை நேர்மாற்றும்:

ab எனில், −a ≥ −b.
ab எனில், −a ≤ −b.

பெருக்கல் நேர்மாறு

பெருக்கல் நேர்மாறின் பண்புகளின்படி:

  • இரண்டும் நேர் எண்கள் அல்லது இரண்டும் எதிர் எண்களாக அமையும் இரு மெய்யெண்கள் a , b எனில்:
ab எனில், 1/a ≥ 1/b.
ab எனில், 1/a ≤ 1/b.
  • ஒன்று நேர் எண், மற்றது எதிர் எண் என அமையும் இரு மெய்யெண்கள் a , b எனில்:
a < b எனில், 1/a < 1/b.
a > b எனில், 1/a > 1/b.

இவற்றைக் கீழுள்ளவாறு தொடர் குறியீட்டில் எழுதலாம்:

  • பூச்சியமற்ற இரு மெய்யெண்கள் a , b :
0 < ab எனில், 1/a ≥ 1/b > 0.
ab < 0 எனில், 0 > 1/a ≥ 1/b.
a < 0 < b எனில், 1/a < 0 < 1/b.
0 > ab எனில், 1/a ≤ 1/b < 0.
ab > 0 எனில், 0 < 1/a ≤ 1/b.
a > 0 > b எனில், 1/a > 0 > 1/b.

இருபுறத்திலும் சார்பைப் பயன்படுத்தல்

Thumb
y = ln x இன் வரைபடம்

ஓரியல்பாகக் கூடும் சார்பொன்றை, அச்சார்பின் ஆட்களத்திலமைந்த ஒரு சமனிலியின் இருபுறமும் செயற்படுத்தும்போது, சமனிலியின் நிலையில் மாற்றம் இருக்காது.

ஓரியல்பாகக் குறையும் சார்பொன்றை, அச்சார்பின் ஆட்களத்திலமைந்த ஒரு சமனிலியின் இருபுறமும் செயற்படுத்தும்போது, சமனிலியின் நிலை நேர்மாறாக மாறும். நேர் எண்களின் கூட்டல் நேர்மாறு, பெருக்கல் நேர்மாறுகளுக்கான விதிகள், ஓரியல்பாகக் குறையும் சார்பைச் சமனிலியின் இருபுறமும் செயற்படுத்துவதற்கான எடுத்துக்காட்டுகளாகும்.

சமனிலி கண்டிப்பானதாகவும் (a < b, a > b), சார்பு கண்டிப்பாக கூடும் சார்பாகவும் இருந்தால், விளைவும் கண்டிப்பான சமனிலியாக இருக்கும். ஏதேனும் ஒன்று மட்டுமே இருக்குமானால் விளைவு, கண்டிப்பற்ற சமனிலியாக அமையும்.

எடுத்துக்காட்டுகள்:

  • நேர் எண்ணால் அடுக்கேற்றம்

n > 0 ; a , b நேர் மெய்யெண்கள் எனில்:

abanbn.
aba-nb-n.

a , b நேர் மெய்யெண்கள் எனில்:

ab ⇔ ln(a) ≤ ln(b).
a < b ⇔ ln(a) < ln(b).
(இயல் மடக்கை ஒரு ஓரியல்பாகக் கூடும் சார்பு)
Remove ads

வரிசைப்படுத்தப்பட்ட களங்கள்

(F, +, ×) ஒரு களம்; F இன் மீதான ஒரு முழு வரிசை ≤ எனில், கீழுள்ள முடிவுகள் உண்மையாக இருந்தால், இருந்தால் மட்டுமே, (F, +, ×, ≤) ஒரு வரிசைப்படுத்தப்பட்ட களமாகும்:

  • aba + cb + c;
  • 0 ≤ a மற்றும் 0 ≤ b ⇒ 0 ≤ a × b.

(Q, +, ×, ≤), (R, +, ×, ≤) இரண்டும் வரிசைப்படுத்தப்பட்ட களங்கள் (Q, விகிதமுறு எண்களின் கணம்; R, மெய்யெண்களின் கணம்). (C, +, ×, ≤) ஒரு வரிசைப்படுத்தப்பட்ட களம் அல்ல (i இன் வர்க்கம் 1 என்பதால்)

மெய்யெண்களில் கண்டிப்பற்ற சமனிலிகள் ≤ , ≥ இரண்டும் முழு வரிசைகளாகவும், கண்டிப்பான சமனிலிகள் < , > இரண்டும் கண்டிப்பான முழுவரிசைகளாக இருக்கும்.

Remove ads

சராசரிகளுக்கிடையிலான சமனிலிகள்

(இசைச் சராசரி),
(பெருக்கல் சராசரி),
(கூட்டுச் சராசரி),
(இருபடிச் சராசரி).
மற்றும் a1, a2, …, an நேர் எண்கள் எனில் இச்சராசரிகளுக்கு இடையேயுள்ள சமனிலி:
Remove ads

அடுக்குச் சமனிலிகள்

a , b நேர் மெய்யெண்கள் அல்லது கோவைகள் எனில், ab வடிவ உறுப்புகள் கொண்ட சமனிலி, அடுக்குச் சமனிலி ஆகும்.

எடுத்துக்காட்டுகள்

  • x ஒரு மெய்யெண் எனில்,
  • x > 0 எனில்,
  • x ≥ 1 எனில்,
  • x, y, z > 0 எனில்,
  • a , b வெவ்வேறான இரு மெய்யெண்கள் எனில்,
  • x, y > 0 , 0 < p < 1 எனில்,
  • x, y, z > 0 எனில்,
  • a, b > 0 எனில்,
  • a, b > 0 எனில்,
  • a, b, c > 0 எனில்,
  • a, b > 0 எனில்,

a1, ..., an > 0 எனில்,

Remove ads

குறிப்புகள்

மேற்கோள்கள்

வெளியிணைப்புகள்

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads