வகையிடல்

அல்லது வகையீட்டுக் கெழு என்பது ஒரு சார்பின் மாறியின் மதிப்பு மாறும்பொழுது அச்சார்பின் மதிப் From Wikipedia, the free encyclopedia

வகையிடல்
Remove ads

நுண்கணிதத்தில் வகைக்கெழு (derivative) அல்லது வகையீட்டுக் கெழு (differential coefficient) என்பது ஒரு சார்பின் மாறியின் மதிப்பு மாறும்பொழுது அச்சார்பின் மதிப்பு மாறும் அளவைத் தருகிறது. ஒரு சார்பின் வகைக்கெழு காணும் முறையானது வகையிடல் (differentiation) எனப்படுகிறது.

Thumb
ஒரு சார்பின் வரைபடம் (கருப்பு) மற்றும் அதன் தொடுகோடு (சிவப்பு) தொடுகோட்டின் சாய்வு அப்புள்ளியில் காணப்படும் அச்சார்பின் வகைக்கெழுவிற்குச் சமம்.

பொதுவாக ஒரு கணியத்தில், அதனுடன் தொடர்புடைய மற்றொரு கணியத்தில் ஏற்படும் மாற்றத்தைப் பொறுத்து ஏற்படக்கூடிய மாற்றத்தின் அளவாக வகைக்கெழுவை எடுத்துக் கொள்ளலாம்.

எடுத்துக்காட்டாக, ஒரு நகரும் துகளின் நிலையின் நேரத்தைப் பொறுத்த வகைக்கெழு அத்துகளின் கணநேர திசைவேகமாகும்.

ஒரு மாறியில் அமைந்த மெய்மதிப்புச் சார்புக்கு ஒரு குறிப்பிட்ட புள்ளியில் காணப்படும் வகைக்கெழு, அப்புள்ளியில் சார்பின் வரைபட வளைவரைக்கு வரையப்படும் தொடுகோட்டின் சாய்வுக்குச் சமமாகும். உயர்பரிமாணங்களில் ஒரு குறிப்பிட்டப் புள்ளியில் காணப்படும் ஒரு சார்பின் வகைக்கெழு நேர்பியலாக்கல் எனப்படும் ஒரு நேரியல் உருமாற்றமாகும்.[1] வகைக்கெழுவுடன் நெருக்கமான தொடர்புடைய மற்றுமொரு கருத்துரு வகையீடாகும்.

வகைக்கெழு காணும் செயல்முறை வகையிடுதல் அல்லது வகையிடல் (differentiation) எனப்படும். இதன் எதிர்ச்செயல் எதிர் வகையிடுதல் அல்லது எதிர்வகையிடல் (antidifferentiation) எனப்படும். நுண்கணிதத்தின் அடிப்படைத் தேற்றத்தின்படி, எதிர்வகையிடலும் தொகையிடலும் சமம்.

Remove ads

வகையிடுதல் ஒரு கண்ணோட்டம்

பல அன்றாட பிரச்சினைகள் கணிதத்தில் ஆழமாகவும் அகலமாகவும் அலசப்படுகின்றன. அப்படியொரு பிரச்சினைதான் 'மாறுதல்' என்ற பிரச்சினை. உலகில் எதுவுமே மாறிக்கொண்டிருக்கிறது. சாலையில் போகும் காரின் வேகத்தை வேகமானியைப் பார்த்துத் தெரிந்துகொள்கிறோம். வேகம் என்பது ஒரு மணிக்கு எவ்வளவு தூரம் கார் போகிறது என்பதைச் சொல்கிறது. ஆனால் ஒரு மணி நேரம் பிரயாணம் செய்துதான் அதைத் தெரிந்துகொள்ள வேண்டுமென்பதில்லை. ஒவ்வொரு நிமிடமும், ஏன், ஒவ்வொரு நொடியும் அந்த வேகம் மாறிக்கொண்டேயிருக்கிறது. அப்படியும் நொடிக்கு நொடி அதை அளந்து சொல்லிவிடமுடியும். சென்ற நொடியில் கார் போன துரத்தை வைத்து அந்த நொடியில் அதன் வேகம் இவ்வளவு என்று கணக்கிடுவதற்குத் தான் வேகமானி இருக்கிறது. அதற்கு அடிப்படைதான் வகையிடல்.

கணிதத்தில் இதற்கு வழி இருக்கிறது என்று தனித்தனியே முதன்முதல் சொன்னவர்கள் இருவர். ஐசக் நியூட்டன் (இங்கிலாந்து), மற்றும் கோட்பிரீட் லைப்னிட்ஸ் (ஜெர்மனி) -- இருவரும் 17ம் நூற்றாண்டின் பின்பாதியில், வகைக்கெழு அல்லது வகையீட்டுக்கெழு (Derivative, Differential Coefficient) என்பதைக் கண்டுபிடித்தனர். இதனில் தொடங்கியதுதான் நுண்கணிதம் என்ற கணிதத்தின் இன்றியமையா அடிப்படைப் பிரிவு.

ஒர் செயலியின் ( சாரா மாறி மாறும்பொழுது அதனுடன் தொடர்புடைய சார் மாறி மாறும். சாரா மாறி சிறிதாக மாறும் பொழுது அம்மாறுதலின் அளவு என்று குறிக்கப்படும்.

என்ற சாராமாறி ஆக ஆகும்போது,

என்ற சார்மாறி, என்ற மாறுதலுக்குள்ளாகி, ஆகும்.

சார்மாறியின் மாறுதல் .

சாராமாறியின் மாறுதல்

மாறுதல்களின் விகிதம் .

இந்த விகிதம் என்பது நம் காரின் வேகத்தை அளக்கும்போது, சென்ற ஒரு நொடியில் கார் போன தூரத்தை ஆகவும், சென்ற ஒரு நொடிக்கான நேரத்தை ஆகவும் எடுத்துக்கொண்டு கணித்த விகிதம் ஆகும்.

ஆனால் நுண்கணிதத்தில் இதை இன்னும் நுண்பியப்படுத்தி, நொடியையும் விட மிகவும் நுண்ணியதான அந்த ஒரு கணநேரத்தில் காரினுடைய வேகம் என்ன என்று சொல்வதற்கு 'எல்லை' என்ற கணிதக் கருத்துப் பயன்படுத்தப்படுகிறது.

அதாவது, ஐ சிறிது சிறிதாக ஆக்கி கடைசியில் சூனியமாகவே ஆக்க முயற்சி செய்தால், ம் சிறிது சிறிதாக ஆகி, அதுவும் சூனியமாகவே ஆகிவிடும் .

ஆனால் அப்படி இரண்டும் சூனியமானால், நாம் சூனியத்தை சூனியத்தால் வகுக்கவேண்டிவரும். இது கணிதத்தில் அனுமதிக்கப்படாத செயல்.

ஆனால் வேறு வழிகளில் க்கு சூனியத்தை நோக்கி மாறும்போதும் ஒரு மதிப்பு கண்டுபிடிக்க முடியுமானால் அதுதான் அந்தக் கணத்தில் கார் செல்லும் வேகமாகும். இந்த மதிப்பை

என்று குறிப்பிட்டு, சுருக்கமாக என்று எழுதப்படுகிறது. இதுதான் வகைக்கெழு.

Remove ads

வகையிடுதலும் வகைக்கெழுவும்

Thumb
சார்பின் வளைவரை மீதுள்ள ஒவ்வொரு புள்ளியிலும் அதன் வகைக்கெழு, வளைவரைக்கு அப்புள்ளியில் வரையப்படும் தொடுகோட்டின் சாய்வுக்குச் சமம். படத்தில் காணும் கோடு எந்நிலையிலும் வளைவரைக்குத் தொடுகோடாக உள்ளது. பச்சைக் கோடு தோன்றும் இடங்களில் வகைக்கெழு நேர்ம மதிப்பாகவும், சிவப்புக் கோடு தோன்றும் இடங்களில் வகைக்கெழு எதிர்ம மதிப்பாகவும் கறுப்புக் கோடு தோன்றும் இடங்களில் வகைக்கெழு பூச்சியமாகவும் இருக்கும்.

ஒரு சார்பின் சாரா மாறி x மற்றும் சார் மாறி y.

அதாவது y = f(x).

x இல் ஏற்படும் மாற்றத்தைப் பொறுத்து y இன் மாறுவீதத்தைக் கணக்கிடும் முறையே வகையிடுதல் ஆகும். இந்த மாறுவீதத்தின் அளவு, x ஐப் பொறுத்த y இன் வகைக்கெழு ஆகும். x , y இரண்டும் மெய்யெண்கள் எனில், f இன் வரைபட வளைவரையில் அமையும் ஒவ்வொரு புள்ளியிலும் காணப்படும் வகைக்கெழுவானது அப்புள்ளிகளில் வளைவரைக்கு வரையப்படும் தொடுகோட்டின் சாய்வுக்குச் சமமாக அமையும்.

நேரியல் சார்பு

f ஒரு நேரியல் சார்பு எனில் அதன் வரைபடம் ஒரு கோடாக இருக்கும்.

இங்கு m , b மெய்யெண்கள்; m கோட்டின் சாய்வு.

y இல் ஏற்படும் மாற்றம் Δy; x இல் ஏற்படும் மாற்றம் Δx; Δ, "மாற்றம்" என்பதன் சுருக்கக் குறியீடு.

எனவே x ஐப் பொறுத்து y இன் மாறுவீதம்:


f நேரியல் சார்பல்ல எனில் வரைபடம் நேர்கோடாக இருக்காது, மாறுவீதமும் வேறுபடும்.

எல்லை மதிப்பாக

மாறுவீதம்-ஒரு எல்லை மதிப்பாக
Thumb
படம் 1. (x, f(x)) புள்ளியில் வரையப்பட்ட தொடுகோடு
Thumb
படம் 2. y= f(x) சார்பின் வளைவரை மீதுள்ள புள்ளிகள் (x, f(x)) , (x+h, f(x+h)) இரண்டையும் இணைக்கும் வெட்டுக்கோடு
Thumb
படம் 3. வெட்டுக்கோடுகளின் எல்லையாக-தொடுகோடு

Δx இன் மதிப்பு நுட்பமான அளவு சிறியதாகும்போது, சார்ந்த மற்றும் சாரா மாறிகளில் ஏற்படும் மாற்றங்களின் விகிதம் Δy / Δx இன் எல்லைமதிப்பாக, மாறுவீதத்தைக் கணக்கிடுவதற்கான கருத்து படங்கள் 1-3 இல் தரப்பட்டுள்ளது.

லைபினிட்சின் குறியீட்டில் x இல் ஏற்படும் நுட்ப மாற்றம் dx எனக் குறிக்கப்படுகிறது. மேலும் x ஐப் பொறுத்த y இன் வகைக்கெழு:

வேறுபாட்டு ஈவுகளின் வாயிலாக

f ஒரு மெய்மதிப்புச் சார்பு எனில் செவ்வடிவவியலில் (classical geometry) அச்சார்பின் வரைபட வளைவரை மீதுள்ள ஒரு புள்ளியில் அவ்வளைவரைக்கு வரையப்படும் தொடுகோடு தனித்தன்மையானது. மேலும் அத்தொடுகோடு வளைவரையை வேறு எந்தப் புள்ளியிலும் குறுக்காகச் சந்திக்காது. அதாவது தொடுகோடு வரைபடத்தினூடாக நேராகச் செல்லாது.

a எனும் புள்ளியில் x ஐப் பொறுத்த y இன் வகைக்கெழு வடிவவியலின்படி சார்பின் வரைபடத்துக்கு அப்புள்ளியில் வரையப்பட்டத் தொடுகோட்டின் சாய்வுக்குச் சமம். அத்தொடுகோட்டின் சாய்வு, (a, f(a)) புள்ளியையும் வளைவரையின் மீது அதற்கு மிக அருகாமையில் அமையும் புள்ளிகளையும் (எடுத்துக்காட்டாக, (a + h, f(a + h))) இணைக்கும் கோடுகளின் சாய்வுகளுக்கு மிக அருகிலுள்ளதாக இருக்கும். இக்கோடுகள் வெட்டுக்கோடுகளாகும். h இன் மதிப்பு எந்த அளவுக்கு பூச்சியத்துக்கு நெருக்கமாக உள்ளதோ அந்த அளவுக்கு தொடுகோட்டின் சாய்வு இக்கோடுகளின் சாய்வுகளுக்கு நெருக்கமாக இருக்கும்.

இந்த வெட்டுக்கோடுகளின் சாய்வு m:

இது நியூட்டனின் வேறுபாட்டு ஈவு.

வெட்டுக்கோடுகள் தொடுகோட்டை நெருங்க நெருங்க இந்த வேறுபாட்டு ஈவின் மதிப்பு வகைக்கெழு ஆகும்.

அதாவது a புள்ளியில் f இன் வகைக்கெழு:

(எல்லை காண முடிந்தால்)

இந்த எல்லை மதிப்புக் காண முடிந்தால், a புள்ளியில் சார்பு f வகையிடத்தக்கது. இங்கு f (a) என்பது வகைக்கெழுவின் குறியீடுகளுள் ஒன்று.

எடுத்துகாட்டு

வர்க்கச் சார்பு வகையிடத்தக்கது. x = 3 புள்ளியில் அதன் வகைக்கெழு 6.

மேலும் பொதுவாக வர்க்கச் சார்புக்கு,

x = a இல்
.

உயர்வரிசை வகைக்கெழுக்கள்

f ஒரு வகையிடக்கூடிய சார்பு, மேலும் அதன் வகைக்கெழு f(x) எனில்:

f(x) வகையிடக்கூடியதாக இருந்தால் அதன் வகைக்கெழு f(x) எனக் குறிக்கப்படும். மேலும் அது f இன் இரண்டாம் வகைக்கெழு எனவும் அழைக்கப்படும்.

இதேபோல் இரண்டாம் வகைக்கெழு மீண்டும் வகையிடக்கூடியதாக இருந்தால் அது f(x) எனக் குறிக்கப்படும். மேலும் அது f இன் மூன்றாம் வகைக்கெழு எனவும் அழைக்கப்படும். இந்த தொடர் வகைக்கெழுக்கள் உயர்வரிசை வகைக்கெழுக்கள் எனப்படுகின்றன.

x(t) என்பது t நேரத்தில் ஒரு துகளின் நிலையைக் குறிக்குமானால்:

x(t) இன் t ஐப் பொறுத்த முதல் வகைக்கெழு அத்துகளின் திசைவேகத்தையும், இரண்டாம் வகைக்கெழு அத்துகளின் முடுக்கத்தையும், மூன்றாம் வகைக்கெழு அத்துகளின் திடுக்கத்தையும் குறிக்கும்.

வளைவுமாற்றுப் புள்ளி

ஒரு சார்பின் இரண்டாம் வகைக்கெழுவின் குறி மாறும் புள்ளி, அச்சார்பின் வளைவுமாற்றுப் புள்ளி எனப்படும்.[2] வளைவுமாற்றுப் புள்ளியில் ஒரு சார்பு தனது குவிவுத் தனமையிலிருந்து குழிவாகவோ அல்லது குழிவுத்தன்மையிலிருந்து குவிவாகவோ மாறுகிறது.

  • ஒரு சார்பின் வளைவுமாற்றுப் புள்ளியில் அதன் இரண்டாம் வகைக்கெழுவின் மதிப்பு பூச்சியமாகவும் இருக்கலாம்.

எடுத்துக்காட்டு:

y=x3 சார்புக்கு x=0 ஒரு வளைவுமாற்றுப் புள்ளி. x=0 இல் இச்சார்பின் இரண்டாம் வகைக்கெழு பூச்சியம்.

  • ஒரு சார்பின் வளைவுமாற்றுப் புள்ளியில் அதன் இரண்டாம் வகைக்கெழு காண முடியாததாக இருக்கலாம்.

எடுத்துக்காட்டு:

y=x1/3 சார்புக்கு x=0 ஒரு வளைவுமாற்றுப் புள்ளி. x=0 இல் இச்சார்புக்கு இரண்டாம் வகைக்கெழு இல்லை.

Remove ads

வகையிடலின் குறியீடுகள்

லைப்னிட்சின் குறியீடு

வகையிடலுக்கு லைப்னிட்ஸ் அறிமுகப்படுத்திய குறியீடு காலத்தால் முந்தியது. இக்குறியீட்டின்படி,

y = f(x) இன் x ஐப் பொறுத்த முதல் வகைக்கெழு:

உயர்வரிசை வகைக்கெழுக்கள்:

y = f(x) சார்பை x ஐப் பொறுத்து n தடவை வகையிடக் கிடைக்கும் n ஆம் வகைக்கெழு:

x = a புள்ளியில் y இன் வகைக்கெழுவை லைபினிட்சின் குறியீட்டில் இருவிதமாக எழுதலாம்:

இக்குறியீட்டில் எந்த மாறியைப் பொறுத்து வகையிடப்படுகிறதோ அம்மாறி பகுதியில் குறிப்பிடப்படுகிறது. பகுதி வகையிடலில் இது பெரிதும் உதவியாய் இருக்கிறது. சங்கிலி விதியை நினைவில் கொள்ளவும் வசதியாக உள்ளது:[3]

லாக்ராஞ்சியின் குறியீடு

லாக்ராஞ்சியால் அறிமுகப்படுத்தப்பட்ட இம்முறையே தற்காலத்தில் பெரும்பாலும் பயன்படுத்தப்படுகிறது.

இக்குறியீட்டில் f இன் முதல் வகைக்கெழு:

இரண்டாம் வகைக்கெழு:

மூன்றாம் வகைகெழு:

இதற்கும் மேற்பட்ட வகைக்கெழுக்களை குறிப்பதற்குச், சிலர் மேலெழுத்தாக ரோமன் எண்ணுருக்களையும் வேறு சிலர் மேலெழுத்தாக எண்களை அடைப்புக் குறிக்குள்ளும் எழுதுகின்றனர்:

or
f (n) f இன் n ஆம் வகைக்கெழு.

வகையிடலை ஒரு சார்பாகக் கருதும்போது லைபினிட்சின் குறியீட்டை விட இக்குறியீடு பொருத்தமானதாகவும் வசதியானதாகவும் இருக்கும்.

நியூட்டனின் குறியீடு

வகையிடலுக்கு நியூட்டன் அறிமுகப்படுத்திய குறியீட்டில் ஒரு சார்பின் நேரத்தைப் பொறுத்த முதல் வகைக்கெழுவைக் குறிக்க அச்சார்பின் பெயர் மீது ஒரு புள்ளியும் இரண்டாம் வகைக்கெழுவைக் குறிக்க இரண்டு புள்ளிகளும் இடப்படுகின்றன.

y = f(t) எனில்,

இரண்டும் முறையே, t ஐப் பொறுத்த y இன் முதல் மற்றும் இரண்டாம் வகைக்கெழுக்களைக் குறிக்கின்றன. உயர்வரிசை வகைக்கெழுக்களுக்கு இக்குறியீடு பொருத்தமானதாக இல்லை. இக்குறியீடு, வழக்கமாக இயற்பியலிலும் அதோடு தொடர்புடைய கணிதப் பிரிவான வகையீட்டுச் சமன்பாடுகளிலும் பயன்படுத்தப்படுகிறது.

ஆய்லரின் குறியீடு

வகையிடலில் ஆய்லரின் குறியீடு, D என்னும் வகையீட்டுச் செயலியைக் கொண்டுள்ளது. இக்குறியீட்டின்படி, சார்பு f இன் முதல்வகைக்கெழு Df, இரண்டாம் வகைக்கெழு D2f, .... n ஆம் வகைக்கெழு Dnf.

y = f(x) எனில், D உடன் இணைத்து சாரா மாறி x எழுதப்படுகிறது:

அல்லது ,

ஒரே மாறியில் அமைந்த சார்பாக இருப்பின் கீழெழுத்தான x ஐ விட்டுவிட்டும் எழுதலாம்.

நேரியல் வகையீட்டுச் சமன்பாடுகளை எழுதுவதற்கும் தீர்வு காண்பதற்கும் ஆய்லரின் குறியீடு பயனுள்ளதாக இருக்கும்.

Remove ads

வகைக்கெழு காணல்

ஒரு சார்பின் வகைக்கெழுவை, அதன் வேறுபாட்டு ஈவைக் கண்டுபிடித்துப் பின் அதன் எல்லையாகக் காணலாம். இம்முறையில் சில எளிய சார்புகளின் வகைக்கெழுக்களைக் கண்டுபிடித்த பின் அவற்றையும் வகையிடலின் சில விதிகளையும் பயன்படுத்திப் பெரும்பான்மையான சார்புகளின் வகைக்கெழுக்களை எளிதாகக் காணமுடியும்.

எளிய அடிப்படைச் சார்புகளின் வகைக்கெழுக்கள்

பெரும்பாலான சார்புகளை வகையிவதற்கு சில அடிப்படைச் சார்புகளின் வகைக்கெழுக்கள் தேவைப்படுகிறது. அவ்வாறு தேவைப்படும் ஒரு மாறியில் அமைந்த சார்புகளும் அவற்றின் வகைக்கெழுக்களும் கீழே தரப்பட்டுள்ளன. (முழுமையானது அல்ல)

(r ஒரு மெய்யெண்) எனில்,

எடுத்துக்காட்டு:

எனில்,

இவ்வகைக்கெழுச் சார்பு x இன் நேர்ம மதிப்புகளுக்கு மட்டுமே வரையறுக்கப்பட்டுள்ளது, x = 0 க்கும் வரையறுக்கப்படவில்லை. r = 0 எனில், இவ்விதி மாறிலி விதியாகும்.

  • அடுக்குறிச் சார்பும் மடக்கைச் சார்பும்:

வகைக்கெழு காணப் பயன்படும் விதிகள்

நியூட்டனின் வேறுபாட்டு ஈவுகளின் மூலம் வகைக்கெழு காணல் சில சமயங்களில் சிக்கலான எல்லைகளைக் கொண்டிருக்கலாம். அதற்குப் பதிலாக சில அடிப்படை விதிகள் மூலம் வகைக்கெழு காணலாம்.

  • மாறிலி விதி:
f(x) மாறிலி எனில்,
-f , g வகையிடத்தக்க சார்புகள்; , மெய்யெண்கள்.
-f , g வகையிடத்தக்க சார்புகள்
-a ஒரு மாறிலி; f ஒரு வகையிடத்தக்க சார்பு
--f , g வகையிடத்தக்க சார்புகள்; g ≠ 0.
எனில்,
-h , g வகையிடத்தக்க சார்புகள்

வகைக்கெழு காணும் எடுத்துக்காட்டு

எனில்:

இங்கு இரண்டாவது உறுப்பு சங்கிலி விதியைப் பயன்படுத்தியும் மூன்றாவது உறுப்பு பெருக்கல் விதியைப் பயன்படுத்தியும் வகையிடப்பட்டுள்ளது. மேலும் அடிப்படைச் சார்புகள் x2, x4, sin(x), ln(x) and exp(x) = ex, மாறிலி 7 ஆகியவற்றின் வகைக்கெழுக்களும் பயன்படுத்தப்பட்டுள்ளன.

Remove ads

குறிப்புகள்

மேற்கோள்கள்

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads