Топ питань
Часова шкала
Чат
Перспективи

Ізоедричне тіло

багатогранник або мозаїка, всі грані яких однакові З Вікіпедії, вільної енциклопедії

Remove ads

Многогранник розмірності 3 та вище називається ізоедричним або гране-транзитивним, якщо всі його грані однакові. Точніше, всі грані мають бути не просто конгруентними, а мають бути транзитивними, тобто повинні прилягати в одній і тій самій орбіті симетрії. Іншими словами, для будь-яких граней A і B має існувати симетрія всього тіла (що складається з поворотів і відображень), яка відображає A в B. З цієї причини опуклі ізоедричні многогранники мають форми правильних гральних кісточок[1].

Ізоедричні многогранники називають ізоедрами. Їх можна описати конфігурацією їхніх граней. Ізоедричне тіло, що має правильні вершини, є також реберно-транзитивним тілом (ізотоксальним) і кажуть, що воно є квазіправильним двоїстим — деякі теоретики[хто?] вважають ці тіла істинно квазіправильними, оскільки вони зберігають ті самі симетрії.

Ізоедричний многогранник має двоїстий многогранник, який є вершинно-транзитивним (ізогональним). Тіла Каталана, біпіраміди і трапецоедри всі ізоедричні. Вони дуальні ізогональним архімедовим тілам, призмам і антипризмам відповідно. Правильні многогранники, які або самодвоїсті, або двоїсті іншим платоновим тілам (правильним многогранникам), вершинно-, реберно- і гране-транзитивні (ізогональні, ізотоксальні й ізоедричні). Ізоедричний і ізогональний одночасно многогранник називають благородним многогранником[en].

Remove ads

Приклади

Thumb



Шестикутна біпіраміда[en] V4.4.6 є прикладом неправильного ізоедричного многогранника.
Thumb



Ізоедрична каїрська п'ятикутна мозаїка, V3.3.4.3.4
Thumb



Ромбододекаедричний стільник[en] є прикладом ізоедричного (й ізохорного) стільника, що заповнює простір.

k-ізоедричне тіло

Узагальнити
Перспектива

Многогранник є k-ізоедричним, якщо він містить k граней у своїй фундаментальній області симетрії[2].

Аналогічно, k-ізоедрична мозаїка має k окремих орбіт симетрії (і може містити m граней різної форми для деякого m < k)[3].

Моноедричний (має грані одного виду) многогранник або моноедрична мозаїка (m=1) мають конгруентні грані. r-едричний многогранник або мозаїка має r типів граней (їх також називають діедричними, триедричними і так далі для m=2, 3, …)[4].

Кілька прикладів k-ізоедричних многогранників і мозаїк з розфарбуванням граней в k симетричних позиціях:

Більше інформації 3-ізоедричний, 4-ізоедричний ...
Більше інформації 2-ізоедрична, 4-ізоедрична ...
Remove ads

Пов'язані поняття

Комірко-транзитивне або ізохорне тіло є n-вимірним многогранником (n>3) або стільником, які мають конгруентні і транзитивні, тобто такі, що переходять одна в іншу за допомогою симетрії,комірки.

Гране-транзитивне або ізотопне тіло (ізотоп) є n-вимірною фігурою або стільником з конгруентними і транзитивними фасетами ((n-1)-гранями). Двоїстий многогранник ізотопа є ізогональним многогранником. За визначенням, ця ізотопна властивість є спільною для двоїстих тіл однорідних многогранників.

  • Ізотопна 2-вимірна фігура є ізотоксальною (реберно-транзитивною).
  • Ізотопне 3-вимірне тіло є ізоедричним (гране-транзитивним).
  • Ізотопне 4-вимірне тіло є ізохорним (комірко-транзитивним).

Див. також

Примітки

Література

Посилання

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads