Топ питань
Часова шкала
Чат
Перспективи

Ребро (геометрія)

З Вікіпедії, вільної енциклопедії

Ребро (геометрія)
Remove ads

Ребро́ — в геометрії одновимірний відрізок, що з'єднує дві сусідні нульвимірні вершини многокутника, багатогранника або політопа довільної вимірності.[1] В многокутнику ребро ще називають стороною.[2] В багатограннику або, більш загально, у політопі ребро є відрізком в якому дві грані з'єднуються.[3] Відрізок, який з'єднує дві вершини та проходить всередині або зовні не є ребром, натомість його називають діагоналлю.

Thumb

Три ребра: AB, BC і CA — кожне між двома вершинами трикутника.
Thumb
Багатокутник, обмежений чотирма сторонами; Цей квадрат має 4 ребра.
Thumb
У багатограннику кожне ребро розділяє 2 грані, як у цьому кубі.
Thumb
Кожне ребро розділяє 3 або більше граней у чотиривимірному багатограннику, як показано на цій проєкції тесеракту.
Thumb
Многокутник ABCDEF з позначеними червоним кольором ребрами BC і DE

Замкнута послідовність ребер на площині утворює многокутник або грань багатогранника.

Remove ads

Ребра в графах

В теорії графів, ребра — це абстрактний об'єкт, що з'єднує дві вершини графу, на відміну від багатокутника і багатогранника, ребра якого мають конкретне геометричне подання у вигляді лінійного сегмента. Однак, будь-який поліедр може бути представлений у вигляді його кістяку, а саме графом, вершини якого є вершинами многогранника, і у геометричному вигляді[4]. З іншого боку, графи, які є скелетами тривимірних багатогранників, можна охарактеризувати по теоремі Штайніца як з'єднані трьома вершинами планарні графи[5].

Remove ads

Число ребер багатогранника

Будь-який опуклий багатокутник має Ейлерову характеристику:

де V — число вершин, Е — число ребер і F — число граней. Це рівняння відоме як формула Ейлера для багатогранника. Таким чином, число ребер на 2 менше, ніж сума числа вершин і граней. Наприклад, куб має 8 вершин і 6 граней, 12 ребер.

Remove ads

Належність граням

У полігоні два ребра зустрічаються у кожній вершині; в цілому за теоремою М. Балінського[en] існує принаймні n граней в кожній вершині n-вимірного опуклого багатогранника[6]. Аналогічно у багатограннику рівно дві грані відповідає кожному ребру[7], у той час як у вищих вимірностях ребру може відповідати три грані або й більше.

Альтернативна термінологія

У теорії багатомірних опуклих багатогранників грані або сторони n-вимірного багатогранника є одними з його (n − 1)-вимірною особливостей, що хребет — це (n − 2)-вимірних просторових об'єктів, і пік це (n − 3)-вимірний просторовий об'єкт. Таким чином, ребрами полігону є його грані, ребрами 3-вимірного опуклого багатогранника є його хребти, а піки 4-вимірного багатогранника є його вершини[8].

Remove ads

Примітки

Див. також

Посилання

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads