Топ питань
Часова шкала
Чат
Перспективи
Стаціонарна точка
З Вікіпедії, вільної енциклопедії
Remove ads
В математичному аналізі, стаціонарна точка це такий аргумент функції при якому її похідна (градієнт для функції багатьох аргументів) дорівнює нулю.

Для графіка одновимірної функції, це відповідає точці, в якій дотична до графіка паралельна осі x. Для графіка двовимірної функції - дотична площина паралельна площині xy.
Термін зазвичай використовується в двох вимірах, те й буде об'єктом даної статті. Стаціонарні точки в вищих розмірностях зазвичай називаються критичними; тому дивіться їх для опису властивостей вищих розмірностей.
Remove ads
Стаціонарні та критичні точки
Термін "критична точка" часто плутають з терміном "стаціонарна точка". Критична точка - загальніший термін: критична точка може бути або стаціонарною або точкою в якій похідна не визначена.
Стаціонарна точка завжди критична, але критична точка не завжди стаціонарна: вона також може бути недиференційовною.
Для гладкої функції ці терміни взаємозамінні, тому і з'явилась плутанина.
Зауважте що існує також інше визначення критичної точки в вищих розмірностях, коли матриця Якобі не має повного рангу, але не обов'язково нульова, це не аналогічно стаціонарним точкам, бо функція все ще може змінюватись в певному напрямку.
Remove ads
Класифікація
Ізольовані стаціонарні точки лінійно-неперервної функції поділяються на чотири види перевіркою першої похідної:

- локальний мінімум - точка в якій похідна функції змінює знак з від'ємного на додатній.
- локальний максимум - точка в якій похідна змінює знак з додатнього на від'ємний.
- зростаюча точка перегину точка в околі якої похідна функції додатня з обох сторін стаціонарної точки. В ній відбувається зміна опуклості
- спадна точка перегину точка в околі якої похідна від'ємна з обох сторін стаціонарної точки. Вона теж змінює опуклість.
Зауваження: Глобальні екстремуми згідно з теоремою Ферма, можуть бути на межі інтервалу або в критичних точках, і не обов'язково мають бути стаціонарними.
Remove ads
Див. також
Посилання
- Ляшко І.І., Ємельянов В.Ф., Боярчук О.К. Математичний аналіз. Частина 1. — К. : Вища школа, 1992. — 496 с. — ISBN 5-11-003757-4.(укр.)
- Ляшко І. І., Боярчук О. К., Гай Я. Г., Головач Г. П. Математичний аналіз в прикладах і задачах. — 2025. — 550+ с.(укр.)
- Дороговцев А. Я. Математичний аналіз. Частина 1. — К. : Либідь, 1993. — 320 с. — ISBN 5-325-00380-1.(укр.)
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads