热门问题
时间线
聊天
视角

三面形

来自维基百科,自由的百科全书

三面形
Remove ads

三面形(英语:Trigonal hosohedron、Triangular hosohedron或3-hosohedron[1])是以三角形基底多面形,表示三个镶嵌在球面上的球弓形英语Spherical lune,为球面三面体的一种[2],由3个、3条和2个顶点组成,在施莱夫利符号中利用{2,3}来表示[3],其对偶多面体三角形二面体

事实速览 类别, 对偶多面体 ...
Remove ads

性质

三面形是一个退化多面体,其无法拥有体积。三面形由3个二角形组成,每个顶点都是3个二角形的公共顶点。正三面形的每个面都是正二角形,且每个顶点都是3个正二角形的公共顶点,因此正三面形也可以视为一种正多面体,但是因为其已退化,因此不会与帕雷托立体一同讨论,但可以视为一种正则地区图[3]

三面形具有 D3h, [2,3], (*223) 的对称性和 D3, [2,3]+ 的旋转对称性,且阶数为12,在考克斯特符号中用node 3 node 2 node_1 表示。

三面形可以经由一角形二面体透过截角变换而得[注 1][3]

三面形可以截角为三角柱,也可以交错截角为正四面体[4]

皮特里三面形

三面形的皮特里多边形是一种具有6条边和6个顶点的退化扭歪多边形[3],其边两两共用,六个顶点每三个互相共用。三面形的皮特里对偶由一个前述的六边形组成,并且该六边形在每个顶点的周围,以正则地区图的模式自我相邻3次[5],因此在施莱夫利符号中可以用{6,3}(1,1)来表示[3]

三面形的皮特里对偶共由1个面、3条边和2个顶点组成,可以视为一面体的一种,是一个可定向曲面[5],作为正则地区图可以具象化为一种环形多面体,在施莱夫利符号中表示为{6,3}1,0[7]

环形多面体的展开图
Thumb
{6,3}1,0
由1个面、3条棱和2个顶点组成
(v:2, e:3, f:1)

对偶多面体

Thumb
球面上的三角形二面体,三面形的对偶多面体

三面形的对偶多面体三角形二面体(Triangular dihedron或Trigonal dihedron),又称为双三角形(di-triangle[8]),是一种多边形二面体,由2个三角形面、三条边和三个顶点组成。期两个三角形已背对背的方式互相连接,与截半三面形类似,但没有像截半三面形那样在边与边的连接处存在两角形(三角形二面体截半的结果也是截半三面形)。[8]

正三角形二面体是指由两个正三角形背对背贴合所形成的几何体,由于其组成面皆为正多边形,且所有边等长、所有角等角,因此可以视为一种退化的正多面体,其在施莱夫利符号中以{3,2}表示,代表由2个施莱夫利符号表示为{3}的正三角形组成。[9]

做为一个球面镶嵌,球面的正三角形二面体由2个球形三角形组成,其在球面的大圆上共用3个相同的顶点;球面正三角形二面体的每个正三角形面都恰好填满了一个半球。这两个球面正三角形在球面的大圆赤道上等距地分布。

三角形二面体的皮特里对偶为六边形二面体半形[8][10],即六边形二面体的多面体半形,这意味着三角形二面体的皮特里多边形为六边形[8],该六边形的顶点两两共用,或可以是围绕三角形两圈构成的六边形[10]

截半三面形

Thumb
截半三面形

截半三面形是指三面形经过截半变换后的结果,即三面形节去所有顶点至边的中点。所形成的立体由2个三角形截面和3个二角形原始面组成。2个三角形面以类似多边形二面体的方式贴合,而3个二角形则位于贴合边上,围绕三角形面一圈[11]:283,类似于一串香肠串的样式[12],因此又称为三角香肠面形(3-lucanicohedron)[13]

截半三面形共由5个面、6条边和3个顶点组成,在其5个面中有2个三角形面和3个二角形面,其3个顶点皆为2个二角形和2个三角形的公共顶点。由于截半三面形由两种面组成(二角形和三角形),因此其不算是正则地区图,仅能算做拟正则地区图。截半三面形也是三角形二面体经过截半变换后的结果。[13]

截角三角形二面体

截角三角形二面体是一个与截半三面形类似的几何体,其同样有3个二角形面,但两个三角形面变为两个六边形面,六边形面同样背对背贴合,3个二角形面交错地分布在六边形的边上的贴和处,无二角形面的六边形-六边形贴和处则是直接贴合,因此其顶点图变为两个六边形和一个二角形的公共顶点。

Thumb
截角三角形二面体
Thumb
截半三面形

相关多面体

三面形是三角形二面体对偶多面体[3],因此与三角形二面体具有相同的对称性,其可以衍生出一些相关的多面体:

更多信息 [3,2]+, (322), 半正对偶 ...
更多信息 球面镶嵌, 欧式镶嵌 仿紧空间 ...
Remove ads

参见

注释

参考文献

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads