圓周率
欧几里得平面上圆周与直径长度的比值 来自维基百科,自由的百科全书
圓周率是数学常数,等於任何圆的周长和其直径的比,一個常見的近似值等於3.14159265,常用符号表示。
各种各样的数 |
基本 |
延伸 |
其他 |
是无理数,不能用分数表示出来(即它的小数部分是无限不循环小数),但近似等有理数。學界認為π的数字序列在统计上是随机分布,但迄今未能证明。此外,π还是超越数,亦即它不是任何有理系数多项式的根;化圆为方的问题不可能用尺规作图解决。
几个文明古国很早就須计算出π的精确值以便于生产的计算。西元5世纪,中國劉宋数学家祖冲之用几何方法将圆周率计算到小数点后7位。大约同时,印度数学家也将圆周率计算到小数点后5位。史上首條π的精确无穷级数公式(即π的莱布尼茨公式)直到约1000年后才由印度数学家发现。[5][6]微積分出現,π的位數很快計到數百位,足以滿足任何科學工程的計算需求。在20和21世纪,计算机技术快速发展,π的计算精度急速提高。截至2024年3月,π的十进制精度已達105万亿位。[7]几乎所有科学研究对π的精度要求都不超过几百位,当前计算π的值主要都为打破记录、测试超级计算机的计算能力和高精度乘法算法。[2]:17[8]
π的定义涉及圆,在三角学和几何学的许多公式,特别是广泛应用在圆形、球形或椭球形相關公式中。[9]在近代數學分析裡,π改由實數系統譜性質中的特征值或週期來定義,其他數學領域如數論、統計以及幾乎所有物理學領域均有出現,π的广泛用途使它成为科学界内外最广为人知的数学常数。几本专门介绍π的书籍经已出版,圆周率日(3月14日)和π值计算突破记录也往往会成为报纸的新闻头条。[10]此外,背诵π值的世界记录已达10萬位。[11]

基本概念
数学家用小写希腊字母表示圆周和其直径之比,有时也将其拼写为“Pi”,来自希腊语“περίμετρος”(周长)的首字母。[12]英语π的发音与英文单词“Pie”(/paɪ/,西式馅饼)相同。[13]π的小写字母(或其无衬线体)在数学要和表示连乘积的大写Π相区分开。
关于选择符号π的原因,请参见引入π符号一节。

- 。
无论圆的大小如何,比值为恒值。如果圆的直径变为原先的二倍,周长也变为二倍,比值不变。π目前的定义暗地用了欧几里得几何的一些定理,虽然圆的定义可扩展到任意曲面(即非欧几里得几何),但这些圆不符合定律。[2]
这里,圆的周长指其圆周的弧长,弧长这概念可以不依赖几何学,而是用微积分学的极限来定义。[14]例如,若想计算笛卡儿坐标系中单位圆上半部分的弧长,需要用到积分:[15]
上述积分是由卡尔·魏尔斯特拉斯于1841年对π的积分定义。[16]
π这些依赖周长、且暗地依赖积分的定义如今在文献中并不常见。雷默特(Remmert (1991))解释说现代教微积分時,大学一般将微分学课程安排在积分学课程之前,所以不依赖于后者的π的定义就很有必要了。其中一种定义由理查·巴爾策提出,[17]由愛德蒙·蘭道推广,[18]其表述如下:π是两倍于能使余弦函数等于零的最小正数。[2][15][19]余弦函数可以由独立于几何之外的幂级数[20]定义,或者使用微分方程的解来定义。[19]
在相似的启发下,π可以用关于复变量的复指数函数来定义。复指数类似余弦函数,可用多种方式定义。令函数值为一的复数集合是如下所示的(虚)等差數列:
- ,
基于同样想法但更抽象的定义运用了精巧的拓扑学和代数学概念,用以下定理描述:[22]存在唯一的从加法模数整数组成的实数群R/Z到绝对值为1的复数组成的乘法群的连续同态(拓扑学概念,指在拓扑空间之间的一种态射)。数字π定义为此同态派生的模的一半。[23]
周长固定,圆会围成最大面积,π同樣表述为等周不等式中出现的常数(乘四分之一)。此外,在很多其他紧密相关的方程中,π作为某些几何或者物理过程的特征值出现;详见下文。
π是无理数,无法表示成两整数之比的形式(形如的分数常用来近似表达π,但是没有任何普通分数(指整数的比)可以取到π的精确值)。[2]:5由于是无理数,故可表示为无限不循环小数。有多种方法能证明π是无理数,这些证明也都要用到微积分学和反证法。可以用有理数来近似的程度還無法準確得知(稱為無理性度量),不過估計其無理性度量比e或ln(2)的要大,但是小於刘维尔数的無理性度量[24]。
統計隨機性检验,包括正规数检验,可验证的位數沒有明顯的固定模式。的小数中任意固定长度的序列(如3位數000,001……999)出現機率都相同[25]。不過有關π是正规数的猜想既無證明,亦無证伪[2]:22-23[25]。
電腦出現後可生成大量π的不同位数,并統計分析之。金田康正詳細統計分析了π的十進制數字,并验证了其分布正规:例如,假設檢定0到9十個數的出現頻率,找不到有特定重复规律的證據[2]:22, 28–30。根據無限猴子定理,任何任意長度、由隨機內容組成的子序列看起來都有可能像不隨機生成。因此,就算π的小数序列通過了隨機性統計測試,其中也可能有幾位的數字看起來似有规律可循而非隨機数,例如π的十進制写法在小數第762位后开始出现了連續六個9[2]:3。

不仅是无理数,还是超越数,即不是任何有理系数多项式的根。(比方说,试图解有限项方程来求的值)[26][註 1]
的超越性衍生出一些重要的结果:不能经有限次四则运算和开平方运算有理数来获得,因此不是规矩数。换言之,尺规作图作不出长度为的线段,也就不可能用尺规方法做出与已知圆面积相等的正方形。后者即为有名的化圓為方问题,该问题早在古典时代即已提出,曾困扰人数千年之久[27][28]。直至今天,依然有民间数学爱好者声称他们解决了这问题[29]。
像所有无理数一样无法表示成分数,但等全部无理数都能表示成一系列叫连分数的连续分数形式:
在这连分数的任意一点截断化简,都能得到π的近似值;前四位近似值是3、、、。这些数在历史上是π最广为人知且广為使用的几个近似值。用以上方式得出的的近似值要比任何有相同或更小的整数分母的其他整数分数近似值更接近π。[30]π是超越数,据定义来说它不是代數數,又因此不可能是二次無理數;是故π不能表示为循环连分数。尽管的简单连分数没有表现出任何其他明显规律,[31]数学家發現了数條广义连分数能表示π,例如:[32]
圆周率近似值包括:
- 整数:3
- 分数(依准确度顺序排列):13/4、16/5、19/6、22/7、179/57、267/85、333/106、355/113、52163/16604、53228/16943、55358/17621、57843/18412、60328/19203、103993/33102、245850922/78256779[30](选自 A063674 及 A063673。)
- 小數(整数后首80位):3.14159265358979323846264338327950288419716939937510582097494459230781640628620899...[2]:240(另见 A000796)
其他进位制的近似值

任何复数(以为例)都可以表示为一组实数对:极坐标系用实数表示半径,代表复平面上复数离原點的距离;实数则表示夹角,即这条半径(复平面上复数与原点的连线)与正实轴经顺时针转动的夹角。这样一来,就可写成[33]
- ,这里代表虛數單位,即=-1。
复分析中,欧拉公式将三角函数与复指数函数糅合在一起[34]:
欧拉公式确立了的复指数与复平面上以原点为圆心的单位圆上的点之间的关系,而且当时,欧拉公式就能改写为歐拉恆等式的形式:
欧拉等式亦可用于求出方程的个不同复数根(这些根叫做次单位根”[36]),可以根据以下公式求得:
- 。

常出现在有关几何的问题中。然而,不少和几何无关的问题也可看到的身影。
在許多用處中都會以特征值形式出現。例如理想的振動弦問題可以建模為函數在單位區間的圖形,固定邊界值为。弦振動的模態會是微分方程的,此處λ是相關的特徵值。受施图姆-刘维尔理论限制,只能是一些特定的數值。而即為一個特征值,因為函數滿足邊界條件及微分方程[37]。

是上述方程的最小特征值,也和弦振動的基本模式有關。一種讓弦振動的方式是提供弦能量,能量會滿足維廷格函數不等式[38],其中提到若函數使得,且和都是平方可積函數,則以下的不等式成立:
此例中等號成立的條件恰好是為倍數的時候。因此似乎是維爾丁格不等式的最佳常數,也是最小的特征值(根據雷利商數的計算方式)
在更高維度的分析也有類似的角色,出現在其他類似問題的特徵值中。就如以上所述,的一項特點是等周定理中的最佳常數:周長為的平面若尔当曲线,所圍面積滿足以下的不等式
- ,
及,故等號成立的條件是曲线為圓形[39]。
圓周率π也和庞加莱不等式的最佳常數有關[40],是一維及二維的狄氏能量特征向量最佳值中最小,會出現在許多經典的物理現象中,例如經典的位势论[41][42][43]。其一維的情形即為維廷格不等式。
圓周率π也是傅里叶变换的重要常數,傅里叶变换屬於积分变换,將實數線上有複數值、可積分的函數,轉換為以下形式:
傅里叶变换有幾種不同的寫法,但不論怎麼寫,傅里叶变换及反傅里叶变换中,一定會有某處出現。不過上述的定義是最經典的,因為其描述了L2空間中唯一的幺正算符,也是空間到空間的代數同態[44]。
不确定性原理也用到。不确定性原理提出了可以將函數在空間及在頻域中局部化程度的下限,用傅立葉轉換的方式表示:
- 。
物理的結果,有關量子力学中同時觀測位置及動量的不確定性,見下文。傅立葉分析中出現π是史東-凡紐曼定理的結果,證實了海森伯群的薛定諤表示是唯一[45]。

高斯积分是对高斯函数在整条实轴上的积分,即函数下方与X轴围成的面积,其结果为,
此积分的计算可以先计算对整条实轴的积分的平方,通过转换笛卡尔坐标系为极坐标系从而求得
其他计算方法可参阅高斯积分。高斯函数更一般的形式为,求一般形式的高斯积分均可通过换元积分法转化为求的积分。
另外,当高斯函数为以下形式时,它则是平均数为和標準差为的正态分布的機率密度函數[46]:
这函数是概率密度函数,函数下方与X轴围成的面积必须为1,令和即可变换得出。概率论与统计学领域经常使用正态分布来作为复杂现象的简单模型:例如科学家通常假设大多数试验观测值的随机误差都是服从正态分布[47]。

概率论与统计学中的中心极限定理解释了正态分布以及的核心作用,这定理本质上是联系着的谱特征与海森堡不确定性原理相关的特征值,并且在不确定性原理中有
- ,
这里的與分別為位置與動量的標準差,是約化普朗克常数,而不等式的等号当且仅当粒子的波函数为高斯函数使成立[48]。
同样地,作为唯一独特的常数使得高斯函数等于其自身的傅里叶变换,此时的高斯函数形式为[49]。根据豪(Howe)的说法,建立傅里叶分析基本定理的“全部工作(whole business)”简化为高斯积分。
历史
圓周率在远古时期(西元前一千纪)已估算至前两位(3.1)。有些埃及學家聲稱,遠至古王國時期時期的古埃及人已經用作為圓周率的約數[50][註 2],但這說法受到質疑。[52][53][54][55]
最早有記載的对圓周率估值在古埃及和巴比伦出现,兩估值都与圆周率的正确数值相差不到百分之一。巴比伦曾出土一塊西元前1900至1600年的泥板,泥板上的幾何學陳述暗示人们当时把圓周率視同(等於3.125)。[2]:167埃及的莱因德数学纸草书(鉴定撰寫年份為西元前1650年,但抄自一份西元前1850年的文本)載有用作計算圓面積的公式,该公式中圓周率等于(≈3.1605)。[2]:167
西元前4世紀的《百道梵書》的天文學運算把(≈3.139,精确到99.91%)用作圓周率估值[56]。西元前150年前其他印度文獻把圓周率視為(≈3.1622)[2]:169。

第一條有紀錄、嚴謹計算π數值的演算法是用正多邊形的幾何算法,在西元前250年由希臘數學家阿基米德發明。[2]:170這算法用了有一千年之久,因而有時π亦稱阿基米德常數。[2]:175、205阿基米德的算法是在計算圓的外切正六邊形及內接正六邊形的邊長,以此計算的上限及下限,之後再將六邊形變成十二邊形,繼續計算邊長,一直計到正96邊形為止。他根據多邊形的邊長證明(也就是)[57]。阿基米德得到的上限也造成常見誤解,認為就等於[2]:171。在西元前150年,希臘羅馬的科學家克劳狄乌斯·托勒密在《天文学大成》一書中提到π的數值是3.1416,可能來自阿基米德,也可能來自阿波罗尼奥斯。[2]:176[58]數學家在1630年利用多邊形的方式計算π到第39位小數,一直到1699年,其他數學家才利用無窮級數的方式打破其紀錄,計算到第71位小數[59]。

中国历史上,的數值有3[60]、3.1547(西元前一世紀)、(西元前100年,數值約3.1623)及(第三世紀,數值約3.1556)[2]:176–177。大約在西元265年,曹魏數學家刘徽創立割圆术,用正3072邊形計算出π的數值為3.1416。[61][2]:177他後來又發明了較快的算法,利用邊數差兩倍的正多邊形,其面積的差值會形成等比數列,其公比為的原理,配合96邊形算出π的值為3.14。[61]祖冲之在西元480年利用割圆术計算12288邊形邊長,得到π的值在3.1415926和3.1415927之间。他同时提出了π的约率和密率。在之後的八百年內,這都是π最準確的估計值。[2]:178為紀念祖沖之對圓周率發展的貢獻,日本數學家三上義夫將這推算值命名為“祖沖之圓周率”,簡稱“祖率”。[62]
印度天文學家阿耶波多在西元499年的著作《阿里亞哈塔曆書》中使用了3.1416的數值。[2]:179斐波那契在大約1220年用獨立於阿基米德多邊形法,計算出3.1418[2]:180。義大利作家但丁·阿利吉耶里用的數值則是。[2]:180
波斯天文學家卡西在1424年利用3×228邊的多邊形,計算到六十進制的第9位小數,相當十進制的第16位小數。[63][64]這一突破成為當時的紀錄,延續了約180年。[65]法國數學家弗朗索瓦·韦达在1579年用3×217邊形計算到第9位小數[65],佛蘭芒數學家阿德里安·范·羅門在1593年計算到第15位小數[65]。荷蘭數學家鲁道夫·范·科伊伦在1596年計算到第20位小數,他之後又計算到第35位小數(因此在二十世紀初之前,圓周率在德國會稱為鲁道夫數)。[2]:182–183荷蘭科學家威理博·司乃耳在1621年計算到第34位小數[2]:183,而奧地利天文學家克里斯托夫·格林伯格在1630年用1040邊形計算到第38位小數[66],至今這仍是利用多邊形算法可以達到最準確的結果[2]:183。

16及17世紀時,開始改用無窮级数的方式去計π。無窮级数是一組無窮數列的和[2]:185–191。無窮级数讓數學家可以計算出比阿基米德以及其他用幾何方式計算的數學家更準確的結果。[2]:185–191雖然詹姆斯·格雷果里及戈特弗里德·莱布尼茨等歐洲數學家利用無窮數列計算π而使得该方法为大家所知,但这种方法最早是由印度科學家在大約1400到1500年之間發現。[2]:185-186[67]第一個记载用無窮级数計算π的人是约西元1500年左右时,印度天文學家尼拉卡莎·薩默亞士在他的著作《系統匯編》中用梵語詩所記錄。[68]當時沒有這數列對應的證明,而證明出現在另一本較晚的印度作品《基本原理》,年代約在西元1530年。尼拉卡莎將該數列歸功於更早期的印度數學家桑加馬格拉馬的馬德哈瓦(1350–1425)。[68]相關的無窮级数有許多,包括有關、及的,現在稱為馬德哈瓦數列或π的莱布尼茨公式[68]。瑪達瓦在1400年用無窮级数計算π到第11位小數,但在1430年一位波斯數學家卡西利用多邊形算法否定了他算的結果[69]。

歐洲發現的第一條無窮項圓周率公式是無窮乘積(和一般用來計算π的無窮級數不同),由法國科學家弗朗索瓦·韦达在1593年發現[2]:187[71]:
約翰·沃利斯在1655年發現了沃利斯乘积,是歐洲發現的第二條無窮項圓周率公式[2]:187:
微积分学由英國科學家艾萨克·牛顿及德國數學家戈特弗里德·莱布尼茨在1660年代發明,許多計π的無窮級數出現。牛頓自己就用反正弦()數列在1655年或1666年將π近似到第15位小數,後來寫到「我很羞愧告訴你我為了計算它用了多少數字,我當時沒有做其他事。」[70]
蘇格蘭數學家詹姆斯·格雷果里在1671年發現了馬德哈瓦公式,莱布尼茨也在1674年發現:[2]:188–189[72]
這公式即為格雷果里-莱布尼茨公式,在時數值為。[72]1699年時英國數學家亚伯拉罕·夏普用格雷果里-莱布尼茨公式,在時計算,計算到π的第71位小數,打破由多邊形算法得到的第39位小數的记录。[2]:189格雷果里-莱布尼茨公式在時非常簡單,但收斂到最終值的速度非常慢,現在不会再用此公式來計π。[2]:156
約翰·梅欽在1706年用格雷果里-莱布尼茨級數產生了可以快速收斂的公式:[2]:192–193
梅欽用這公式計到π第100位小數[2]:72–74後來其他數學家也發展了一些類似公式,現在稱為梅欽類公式,創下了許多計算π位數的紀錄。[2]:72–74在進入電腦時代時,梅欽類公式仍然是耳熟能详可以計算π的公式,而且在约250年的时间里,很多有關π位數的紀錄都是梅欽類公式所得,比如在1946年時由達尼爾·弗格森(Daniel Ferguson)用這類公式計到第620位小數,是沒有計算設備輔助的最佳紀錄。[2]:192–196, 205
1844年,計算天才扎卡里亞斯·達斯在德國數學家卡爾·弗里德里希·高斯的要求下以梅欽類公式心算了π的200位小數,並創下紀錄。[2]:194-196英國數學家威廉·謝克斯花了15年的時間計算π到小數707位,不過第528位小數出錯,後面的小數也都不正確。[2]:194–196
有些π的無窮級數收斂的比其他級數要快,數學家一般會選用收斂速度較快的級數,可以在較少的計算量下計算π,且達到需要的準確度[73][2]:15–17, 70–72, 104, 156, 192–197, 201–202。以下是π的莱布尼茨公式:[2]:69–72
隨著一項一項的值加入總和中,只要項次夠多,總和最後會慢慢接近π。不過此數列的收斂速度很慢,要到50萬項之後,才會精確到π的第五位小數[74]。
尼拉卡莎在15世紀發展了π的另一條無窮級數,收斂速度比格雷果里-萊布尼茨公式快很多:[75]
以下比較兩條級數的收斂速率:
π的無窮級數 | 第1項 | 前2項 | 前3項 | 前4項 | 前5項 | 收斂到 |
---|---|---|---|---|---|---|
4.0000 | 2.6666… | 3.4666… | 2.8952… | 3.3396… | 3.1415… | |
3.0000 | 3.1666… | 3.1333… | 3.1452… | 3.1396… |
計算前五項後,格雷果里-萊布尼茨級數的和跟π的誤差為0.2,而尼拉卡莎級數和的誤差為0.002。尼拉卡莎級數收斂快很多,也甚為適合用來計π的值。收斂更快的級數有梅欽類公式及楚德诺夫斯基算法,後者每計一項就可以得到14位正確的小數位[73]。
并非所有和π有关的研究都旨在提高计算它的准确度。1735年,欧拉解决了巴塞尔问题,建立了所有平方数倒数和与π的关系。之后欧拉发现了欧拉乘积公式,得到了π、素数的重要關聯,對日後黎曼ζ函數的研究影響深遠。[76]
1761年,瑞士数学家约翰·海因里希·朗伯用正切函数的无穷连分数表达式证明了π是無理數。[2]:5[77]1794年,法国数学家阿德里安-马里·勒让德证明了也是无理数。1882年,德国数学家费迪南德·冯·林德曼证明了对任何非零代数数,都是超越数,该结论后来由魏尔斯特拉斯推广为林德曼-魏尔斯特拉斯定理。据此定理和欧拉公式,π只能是超越數,進而证实了勒让德和欧拉提出的π超越性猜想。[2]:196[78]哈代在其著作《数论导引》中则称此证明在提出後,經過希尔伯特、施瓦兹和其他一些人化简过。[79]

在用π专指“圆周率”之前,希腊字母即已用於幾何概念中[2]:166。威廉·奥特雷德在1647年起在《數學之鑰》(Clavis Mathematicae)就已經用及(對應p和d的希臘字母)來表示圓的周長及直徑的比例。
威廉·琼斯在他1706年出版的《新數學導論》(A New Introduction to the Mathematics)提到了,是目前已知最早专门用希臘字母表示圓周和其直徑比例的人[80]。這希臘字母第一次出现是在书中討論一塊半徑1的圓時提到「其圓周長一半()」。琼斯選用可能因它是希臘文“周边”一词“περιφέρεια”的首字母[81]。不過琼斯提到,他那些有關的算式出自「真正聰明的約翰·梅欽先生」,人们推測在瓊斯之前,約翰·梅欽就已开始用表示圓周率[2]:166。
瓊斯在1706年開始使用此希臘字母,但直到萊昂哈德·歐拉在其1736年出版的《力學》中開始使用之后,其他数学家才纷纷开始用指代圆周率。在此之前,數字家可能用像c或p之類的字母代表圓周率[2]:166。歐拉與歐洲其他數學家间时常互相写信来往,的用法迅速傳播开来[2]:166。1748年歐拉在他的《无穷小分析引论》再一次提到了,写道:「簡潔起見,我們將此數字寫為,等於半徑為1的圓周長的一半。」这表示方式之後也推展到整片西方世界[2]:166。
现代数值近似

二十世紀中期计算机技术发展、革新再次引发了計算π位數的熱潮。美國數學家约翰·伦奇及李維·史密斯在1949年用桌上型計算機計算到1120位[2]:205。同年,喬治·韋斯納(George Reitwiesner)及约翰·冯·诺伊曼帶領的團隊利用反三角函数(arctan)的無窮級數,用ENIAC計算到了小數後2037位,花了70小時的電腦工作時間[82]。這紀錄後來多次由其他透過arctan級數计算出的結果打破(1957年到7480位小數,1958年到第一萬位數,1961年到第十萬位小數),直到1973年,小数点后第一百萬位小數經已算出[2]:197。
1980年代有两项發明加速計算了π。第一项是發现了新的迭代法去计π的值,計算速度比無窮級數快很多;另一项是發现了可以快速計算大數字乘積的乘法演算法[2]:15–17。電腦大部分的工作時間都是在計乘法,這類演算法對現代計π格外重要[2]:131。這類演算法包括嘉良對馬(Karatsuba)算法、譚曲(Toom-Cook)乘法及以傅里叶变换為基礎的乘法演算法(傅里叶乘法)[2]:132, 140。
迭代演算法最早是在1975年至1976年间分别由美國物理學家尤金·薩拉明及奧地利科學家理查·布蘭特独立提出[2]:87。這两條演算法没有依赖無窮級數來計算。迭代會重覆特定計算,将前一次的計算結果作为這一次的輸入值,使得計算結果漸漸的趨近理想值。此方式的原始版本其實是在160年前由卡爾·弗里德里希·高斯提出,現在稱為算术-几何平均数算法(AGM法)或高斯-勒让德算法[2]:87。薩拉明及布蘭特都曾修改之,这算法也稱為薩拉明-布蘭特演算法。
迭代演算法收斂速度比無窮級數快很多,在1980年代以後廣為使用。無窮級數隨著項次的增加,一般來說正確的位數也會增加幾位,但迭代演算法每計算多一次,正確位數會呈几何级数增长。例如薩拉明-布蘭特演算法每計算多一次,正確位數會是之前的二倍。1984年加拿大人喬納森·波温及彼得·波温提出迭代演算法,每計算多一次,正確位數會是之前的四倍,1987年時有另一條迭代演算法,每計算多一次,正確位數會是之前的五倍[83]。日本數學家金田康正使用的演算法在1955年及2002年間創下了若干項紀錄[84]。不過迭代演算法的快速收斂也有其代價,需要的記憶體明顯比無窮級數多[84]。

一般而言,π值并不需要过于精确便能够满足大部分数学运算的需求。按照約·安(Jörg Arndt)及古里斯佗夫·希奴(Christoph Haenel)的计算,39位精確度已可将可觀測宇宙圆周的精确度準確至一粒原子大小,足以運算絕大多數宇宙学的计算需求[85]。尽管如此,和π有關的成就往往成為世界各地的新聞頭條;部分人出于對破紀錄的冲动,依然奋力算出π小数点后上千甚至上百萬位[2]:17–19[86][87]。此外也有測試超级计算机、測試数值分析算法(包括高精度乘法算法)等實際好處。純粹數學這领域也能计算π的位数评定其隨機度[2]:18。

现代计算π的程序不仅局限于迭代算法。20世纪80与90年代,出现了可用来计算π的新无穷级数,其收敛速度可与迭代算法媲美,而又有着复杂度、内存密集度更低的优势。[84]印度数学家斯里尼瓦瑟·拉马努金是这方面的先驱,他在1914年发表了许多与π相关的公式,这些公式十分新颖,极为优雅而又颇具数学深度,收敛速度也非常快。[2]:103–104下式即为一例,其中用到了模方程:
这无穷级数收敛速度远快于绝大多数反正切数列,包括梅钦公式。[2]:104第一位使用拉马努金公式计算π并取得进展的是比尔·高斯珀,他在1985年算得了小数点后一千七百万位。[2]:104, 206拉马努金公式开创了现代数值近似算法的先河,此后波尔文兄弟和楚德诺夫斯基兄弟进一步发展了这类算法。[2]:110–111后者于1987年提出了楚德诺夫斯基公式,如下所示:
此公式每计算一项就能得到π的约14位数值[88],因而用於突破圆周率的数位的计算。利用这公式,楚德诺夫斯基兄弟于1989年算得π小数点后10亿(109)位,法布里斯·贝拉于2009年算得2.7千亿(2.7×1012)位,亚历山大·易和近藤滋在2011年算得一万亿(1013)位。[2]:110–111, 206[89][90]类似的公式还有拉马努金-佐藤级数。
2006年,加拿大数学家西蒙·普勞夫利用PSLQ整数关系算法[91]按照以下模版生成了几條计算π的新公式:
- ,
統計模擬法是以概率统计理论为指导的一类非常重要的计数方法,經大量重复试验计算事件发生频率,按照大数定律(即当试验次数充分大时,频率充分接近概率)可以求得的近似值[93]。 布芬(Buffon)投針問題就是其中一項實例:长度的针随机往画满间距的平行线的平面上抛掷次, 如果针与平行直线相交次,充分大就可根据以下公式算出的近似值[94]:
用統計模擬法计的另一例子是随机往内切四分之一圆的正方形内抛掷大量点,落在四分之一圆内的点的数量与抛掷点的总量的比值会近似于。[2]:39–40[95]
此外还可用随机游走试验,并用統計模擬法计算值,如抛掷一枚均匀的硬币次,并记录正面朝上的次数,所得结果中,正面朝上的次数服从二項分佈且
因为硬币均匀,所以N次试验中每次试验结果相互独立。由此可定义一系列独立的随机变量,当抛掷结果为正面时否则为-1,且且取何值有相同概率(即,正面朝上和背面朝上的概率相同)。对随机变量求和可得
设k为“硬币正面朝上的次数”减去“硬币反面朝上的次数”,即可得到。变换式子,得,因此
- ,其中。
可证明[96],
- ,,以及
并且当N变大时,的值会渐近于,因此当N充分大时可根据以下公式算出的近似值:[97]
和其他计算值的方法相比,蒙特卡洛方法收敛速度很慢,而且无论实验多少次,都无从得知的估值已经精确到第几位。因此,当追求速度或精度时,蒙特卡洛方法不适合用来估计。[2]:43[98]
1995年引入的兩條算法开辟了研究的新途径。因为每计算出一位数字,該數就会像流过阀门的水一样不会再出现在后续的计算过程中,这种新進算法叫阀门算法。[2]:77–84[99]这就与无穷级数及迭代算法形成对比——无穷级数和迭代算法自始至终的每一步计算都会涉及到之前所有步骤计算出的中间值。[2]:77–84
1995年,美國數學家斯坦·瓦格纳和斯坦利·拉比諾維茨(Stanley Rabinowitz)发明了一种簡單的阀门算法[99][2]:77[100],其運算速度類似arctan演算法,但速度比迭代算法慢[2]:77。
贝利-波尔温-普劳夫公式(BBP)是另一條阀门算法,屬於一种位數萃取演算法。1995年,西蒙·普勞夫等人發現[2]:117, 126–128[101]
這公式和其他公式不同,可以計算的任何十六进小數位,而不用計算前面全部小數位[2]:117, 126–128。十六进数位可计算得到特定二进数位;想要得到八进制数位的话,计算一、两位十六进小數即可。目前也已發現一些這種演算法的變體,不過還沒有发现針對十進制、可以快速生成特定小數位的位數萃取演算法[102]。位數萃取演算法的一項重要用途是用來確認聲稱是計算到小數位數的新紀錄:若有聲稱是新紀錄的計算結果出現,先將十進制的數值轉換到十六進制,再用贝利-波尔温-普劳夫公式去確認最後一些位數(用亂數決定),若這些位數都對,就能有一定把握认为此計算結果是对的[90]。
1998年到2000年間,分布式计算計畫PiHex用貝拉公式(贝利-波尔温-普劳夫公式的一種變體)計算第1015位,結果是0[2]:20[103]。2010年9月,有雅虎員工用公司的Apache Hadoop應用程式在上千台電腦計算π在2×1015位开始往后256位,其第2×1015位剛好也是0[104]。
伽瑪函數,,可以被用作計算圓周率。
證明如下:
利用歐拉反射公式
令
因為
用途
与圆密切相关,出现在许多几何学和三角学的公式中(特别是与圆、椭圆和球体相关的那些)。 此外,也出现在其他学科的重要公式中,比如统计学、物理学,傅立叶分析和数论的公式。

出现在基于圆的几何图形(如椭圆、球、圆锥与环面)的面积、体积公式中。下面是一些用到π的常见公式:[9]
- 半径的圆周长。
- 半径的圆面积。
- 半径的球体积。
- 半径的球面面积。
上述公式是n维球的体积与其边界((n−1)维球的球面)的表面积的特殊情况,具体将在后文给出解释。
描述由圆生成的图形的周长、面积或体积的定积分常涉及π。例如,表示半径为1的半圆的面积的积分为[105]
的积分表示上半圆(此处的平方根由勾股定理得出),从-1到1的积分可用来计算计算半圆与x 轴间的面积。

三角函数要用到角,而数学家常用弧度作角度单位。π在弧度制起重要作用,数学家将周角,即360度定义为2π度。[106]由这条定义可得,180度=π弧度,1度=弧度。[106]因此,常用的三角函数的周期为的倍数;例如,正弦和余弦周期为π,[107]任何角度和任何整数都有
- 及。[107]

常数出现在将平面微分几何及其拓扑学联系起来的高斯-博内定理中。具体来说,如果紧曲面Σ的高斯曲率为,那么有
- ,
其中是该曲面的欧拉示性数,是整数。[108]例如,曲率为1(也就是说其曲率半径也为1,对于球面而言此时的曲率半径与半径重合)的球面的表面积。球面的欧拉特征数可以通过其同源组计算,其结果为2。于是,便得出
即为半径为1的球面的表面积公式。

向量分析是与向量場的性质有关的微积分的分支,并有许多物理用途,例如用在电磁学中。位于三维笛卡尔坐标系原点的点源的牛顿位势为[110]
表示位于距原点的单位质量(或电荷)的势能,而是维度常数。在这里由表示的场可以是(牛顿)引力場或(库仑)電場,是位势的负梯度:
特殊情况有库仑定律和牛顿万有引力定律。高斯定律表明,通过包含原点的任何平滑、简单、封闭、可定向曲面的场的向外通量等于:
标准形式会将的这因子吸收到常数中,但这种说法表明了它必须出现在“某处”。此外,是单位球面的表面积,但並没有假设是球面。然而,作为散度定理的结果,由于远离原点的区域是真空(无源的),只有中的表面的同调类与计算积分有关,因此可以由相同同调类中的任何方便的表面代替,特别是球形,因为球面坐标可以用于计算积分。
高斯定律的结果之一是位势的负拉普拉斯算子等于狄拉克δ函数的倍:
其中是分布函数。

常数在与爱因斯坦场方程中的四维势起类似的作用,爱因斯坦方程是形成廣義相對論基础的一條基本公式,并且把引力的基本相互作用描述为物质和能量引起的时空弯曲的结果:[111]
是里奇曲率張量,是数量曲率,是度量张量,是宇宙學常數,是万有引力常数,是真空中的光速,而是應力-能量張量。爱因斯坦方程的左边是度量张量的拉普拉斯算子的非线性模拟,並化簡(reduce)至在弱域的極限,而右边是分布函数的模拟乘以。

在复分析中,沿复平面若尔当曲线的围道积分是研究解析函数的重要手段之一。简化版的柯西積分公式表明,对任何若尔当曲线内任一点,以下围道积分给出:[112]
该命题是柯西积分定理的直接推论,后者表明上述围道积分在围道的同伦变换下保持不变,因而沿任一曲线的积分和沿以为圆心的圆周积分的结果相同。更为一般地,该公式对不通过点的任意可求长曲线都成立,但等式右边要乘以曲线关于该点的卷绕数。
一般形式的柯西積分公式建立了全纯函数在若尔当曲线上的值与曲线内任意点处值的关系:[113][114]
柯西积分定理是留数定理的一項特例。根据留数定理,在区域内除去有限个点解析的亚纯函数在边界上的围道积分与函数在这些点的留数之和满足:

阶乘函数的值等于所有小于等于的正整数之积,它的定义域只包含非负整数。Γ函数则是階乘的推广。它在复平面的右半平面定义为:
再利用解析延拓可以将它的定义域扩展到除去非正整数的整塊复数域。当自变量取正整数时,函数给出阶乘;当自变量取半整数时,计算结果含有。例如,。[115]
根据魏尔施特拉斯分解定理,函数可分解为如下的无穷乘积:[116]
是歐拉-馬斯刻若尼常數。利用该分解公式和函数在的值,亦可以证明沃利斯乘积式。函数和黎曼ζ函數、函数行列式的恒等式存在关联,其中扮演着重要的角色。
函数常用于计算维欧氏空间中n 维球的体积和n 维球面的表面积。对维欧氏空间中半径为维球,其体积和表面积满足:[117]
两者还满足如下的关系式:
当很大,用函数可得到阶乘的近似公式,稱斯特靈公式[118],等价于:
斯特灵近似的几何应用之一是埃尔哈特体积猜想。将维欧几里得空间的单纯形记作,则表示该单纯形的所有面扩大。于是
这是仅含一點晶格点之凸体体积的(最佳)上界[119]。


黎曼ζ函数 在数学的许多领域均有应用。当自变量 ,可写作
找到这无穷级数的解析解是数学界著名的“巴塞尔问题”。1735年,欧拉解决了这问题,他得到该无穷级数等于[76]。欧拉的结论可推导出数论中一項结果,即两随机整数互质(无公因数)的概率为 [2]:41–43[120]。整数可由质数整除的概率為(例如,连续7个正整数只有一个可以7整除),任取两随机整数都能以质数整除的概率为,至少有一數不能整除的概率则为。又,一随机整数能否以两不同质数整除是相互独立事件,两随机整数互质的概率可以表示成关于所有质数的无穷乘积[121]
这结论可结合随机数生成器,用統計模擬法计的近似值。[2]:43
巴塞尔问题的结论意味着几何导出量的数值与质数的分布有着深刻的关联。巴塞尔问题是谷山-志村定理的一種特殊情况,是安德烈·韦伊对玉河数的猜想的一項特例,即猜想一个这种形式的算术量关于所有质数的无穷乘积能够等于一个几何量——某局部对称空间体积的倒易。巴塞尔问题中,这空间是双曲3-流形SL2(R)/SL2(Z)。[122]
函数同样满足黎曼方程的公式,其中用到了和伽玛公式:
除此之外, 函数导数也满足
最终的结果是可以从谐振子泛函行列式中求得。这泛函行列式可以无穷乘积展开式计算,而且这种方法等价于沃利斯乘积公式。[123]这种方法可用于量子力学,尤其是玻尔模型中的变分。[124]

周期函数的傅里叶级数很自然出现了。周期函数即实数的小数部分所构成群上的函数。傅里叶分解指出,上的复值函数可表示为无穷多个的酉特征的线性叠加之和。也就是说,到圓群(模为1的复数组成的乘法群)的映射是连续群同態。的特征都有的形式,是一條定理。
有唯一的特征值,直到复共轭,那是一群同态。在圆群用哈尔测度,常数是这特征值的拉东-尼科迪姆导数值的一半。其他的特征值的导数值为的正整数倍。[23]因此,常数是独特的数字,以至于配备了其哈尔测度的群,有对于整数倍的点阵的庞特里亚金对偶性[126]。这是泊松和公式的一维版本。
常數與模形式和Θ函數密切相关——比如,椭圆曲线中的j变量就很大程度涉及楚德诺夫斯基算法(一种快速计算π的方法)。
模形式是以在上半平面的全純函數的在模群(或其子群,是的一格)下的變換特性歸納。Θ函數便是一例:
它是一種名為雅可比形式的模形式,[127]有時以諾姆表達。
常數是特殊常數,它會使雅可比函數形成自守形式,即該函數會以特定方式變換。有若干恆等式在所有自守形式下成立。,例如:
它使得必然在離散海森伯群下以表示(representation)變換。一般模形式和其他函數也包含,這也是根據史東–馮紐曼定理。[127]

柯西分布的香农熵等于,也含。

柯西分布在位势论中扮演着重要的角色因为它是最简单的福斯坦堡测度和与在半平面上做布朗运动相关联的经典泊松核[128]。共轭谐波函数以及希尔伯特变换与泊松核的渐近线有关。希尔伯特变换是由奇异积分的柯西主值给出的积分变换
- 。
常数是唯一的(正)归一化因子因此定义了一个在实数轴上的平方可积分实值函数的希尔伯特空间上的线性复结构[129]。 和傅里叶变换一样,希尔伯特变换就其在希尔伯特空间的变换特性而言可以完全特征化。直到归一化,它是唯一的与正膨胀对易且与实数轴的所有反射反对易有界线性算子[130]。常数是唯一能使这变换幺正的归一化因子。

大衛·波(David Boll)在1991年發現在曼德博集合分形也有π出現[131]。他檢查在曼德博集合在位置的特性。若考慮坐標在「頸部」的點,而趨近零,在發散之前迭代的次數和相乘,會趨近。若是在右側尖點處附近的點也會有類似的特性:在發散之前迭代的次數和的平方根相乘,也會趨近[131][132]。
数学之外的π
与圆以及球坐标系关系密切,即使不是物理常数,也常出现在描述宇宙的基本原则方程中。比方说,经典力学领域的简单公式给出长L的单摆小幅摆动的近似周期,为地球引力加速度常数。[133]
海森堡不確定性原理是量子力学的基本公式,表明测量粒子时,其位置不确定度()与动量不确定度()不可能同时达到任意小(为普朗克常数):[134]。
近似三这特性,和电子偶素的半衰期相對較長有密切的联系。其半衰期的倒數和精细结构常数的關係為[135],為電子質量。
許多結構工程的公式也有,例如歐拉推導的挫曲公式說明了長度為、截面二次轴矩為I的細長形物體,在不挫曲的條件下可以承受的最大軸向負載[136]:
流體動力學的斯托克斯定律中也有。斯托克斯定律是半径约为的小球體在黏度的流體中以速度運動時會受到的阻力满足[137]:
在理想状态下,河的曲折程度(河道本身的长度与源头到入海口的比值)随着时间的推移逐渐趋向于。河流外边缘的快速水流弯曲会使河流内边缘加倍侵蚀,河道变得更弯曲,整條河弯折更厉害。然而,这股弯折劲儿最终会导致河流折回一开始弯折的地方,导致“短路”,并形成河迹湖。这两种相反因素使河道长度与源头到入海口的比值的平均值为π。[138][139]
π文字學(或譯作圆周率的语言学)是指記住的大量位值[2]:44–45,并将其世界紀錄載於健力士世界紀錄大全的做法。維爾·美拿(Rajveer Meena)於2015年3月21日在印度於9小時27分鐘內背誦了7萬位的π,创下健力士世界紀錄大全認證的世界紀錄。[140]2006年,日本退休工程師原口證在千葉縣於官員見證下背誦了十萬位小數,但他未獲健力士世界紀錄大全認證。[141]
常用於記憶π的一項技巧是背誦以單詞長度代表數值的故事或詩歌:第一單詞有三字母,第二單詞有一字母,第三單詞有四字母,第四單詞有一字母,第五單詞有五字母,如此類推。早期例子是英國科學家詹姆士·金斯設計的詩歌:「How I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics.」[2]:44–45這類詩歌有時在英文中稱為「piem」。除了英文,用於記憶π的詩歌亦有不同語言的版本[2]:44-45。但是,記憶的人一般並不以詩歌記憶來創下紀錄,而是用如記憶數字規律或軌跡法的方法。[142]
有好幾位作家仿照上述记忆技巧,用的數值創作了新型的約束寫作方式,當中單詞長度須符合的數值。《The Cadaeic Cadenza》以上述技巧包含了前3835位的值[143],一本標準長度的書《Not a Wake》有一萬單詞,其中各單詞亦代表了的一位。[144]

也許因為的公式很簡短而且四處可見, 比其他數學常数在流行文化中更常見[註 3]。
在2008年由英國公開大學及英國廣播公司聯合制作的記錄片《数学的故事》于2008年十月由英國廣播公司第四台播放。影片讲述了英國數學家马库斯·杜·索托伊在到訪印度研究當地三角學的貢獻時,展示出歷史上π最精確的計算公式的信息图形。[147]
巴黎的科学博物馆發現宮有間圓形房間叫「房」,牆上刻有的707位數,數字貼在圓頂狀的天花板上,由大型的木製字符組成。數值是1853年由英國數學家威廉·尚克思計算出來,但是该结果於第528位后開始出現謬誤,在1946年發現,1949年修正。[148][2]:50
卡尔·萨根的小说《接觸未來》中则暗示说,宇宙的创造者在π的数字中暗藏了一则信息。[149]π的数字也用在凱特·布希所出的专辑Aerial中的《Pi》的歌词里。[150]
美国人在3月14日庆祝圓周率日,此节日在学生中很流行。[151]一些自称“数学极客”的人常常用与其数位来创作一些数学或技术圈内人士才能领会到的笑话。麻省理工学院则有几句包含“3.14159”的大学歡呼口號。[152]2015年的圆周率日格外重要,按照美式写法,当天的日期时间3/14/15 9:26:53
较其他圆周率日包含更多位数的。[153]
在北电网络于2011年举行的技术专利拍卖会上,谷歌用了一些包含在内的数学或科学常数來竞价。[154]
在1958年,阿尔伯特·伊格尔提议将换成τ(tau)以便简化公式。在此定义为的兩倍[155]。然而,没有任何其他作者曾这样使用过。有些人使用不同的值,。[156]这些人称不论是作为弧度制下圆周长的1转还是作为弧长与半径的比值(而不是与直径的比值)都比自然,也能因此简化许多公式。[157][158]有媒体报道称,因为的值大小约为6.28,現已有人在6月28日庆祝“节”,并吃“两个派”;[159]然而,主流数学界还并未使用。[160]
1897年,有业余美国数学家试图藉印第安纳州议会来通过後世所謂印第安纳圆周率法案的法案。这法案试图以法律命令强制规定数学常数之值而臭名远播。该法案描述化圆为方的方法,并间接提到了的错误值,例如3.2。该法案通过了印第安纳州众议院的表决,但参议院否决之。[2]:211–212[161][162]
注释
參考資料
延伸閱讀
外部連結
Wikiwand - on
Seamless Wikipedia browsing. On steroids.