The breakpoint cluster region protein (BCR) also known as renal carcinoma antigen NY-REN-26 is a protein that in humans is encoded by the BCR gene. BCR is one of the two genes in the BCR-ABL fusion protein, which is associated with the Philadelphia chromosome. Two transcript variants encoding different isoforms have been found for this gene.

Quick Facts Available structures, PDB ...
BCR
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesBCR, Bcr, 5133400C09Rik, AI561783, AI853148, mKIAA3017, ALL, BCR1, CML, D22S11, D22S662, PHL, RhoGEF and GTPase activating protein, BCR gene, BCR activator of RhoGEF and GTPase
External IDsOMIM: 151410; MGI: 88141; HomoloGene: 3192; GeneCards: BCR; OMA:BCR - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_004327
NM_021574

NM_001081412

RefSeq (protein)

NP_004318
NP_067585

NP_001074881

Location (UCSC)Chr 22: 23.18 – 23.32 MbChr 10: 74.9 – 75.02 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse
Close
Quick Facts Identifiers, Symbol ...
Bcr-Abl oncoprotein oligomerisation domain
structure of the bcr-abl oncoprotein oligomerization domain
Identifiers
SymbolBcr-Abl_Oligo
PfamPF09036
InterProIPR015123
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Close

Function

Although the BCR-ABL fusion protein has been much studied, the function of the normal BCR gene product is still not clear. The protein has serine/threonine kinase activity and is a guanine nucleotide exchange factor for the Rho family of GTPases including RhoA.[5][6]

Clinical significance

A reciprocal translocation between chromosomes 22 and 9 produces the Philadelphia chromosome, which is often found in patients with chronic myelogenous leukemia. The chromosome 22 breakpoint for this translocation is located within the BCR gene. The translocation produces a fusion protein that is encoded by sequence from both BCR and ABL, the gene at the chromosome 9 breakpoint.[7]

Structure

Thumb
Schematic of the BCR-ABL formation through chromosomal translocation

The BCR-ABL oncoprotein oligomerisation domain found at the N-terminus of BCR is essential for the oncogenicity of the BCR-ABL fusion protein. The BCR-ABL oncoprotein oligomerisation domain consists of a short N-terminal helix (alpha-1), a flexible loop and a long C-terminal helix (alpha-2). Together these form an N-shaped structure, with the loop allowing the two helices to assume a parallel orientation. The monomeric domains associate into a dimer through the formation of an antiparallel coiled coil between the alpha-2 helices and domain swapping of two alpha-1 helices, where one alpha-1 helix swings back and packs against the alpha-2 helix from the second monomer. Two dimers then associate into a tetramer.[8] Structure-based engineering starting from the antiparallel coiled coil domain of the BCR-ABL oncoprotein (BCR30-65) resulted in a new pH-sensitive homodimeric antiparallel coiled coil.[9]

Interactions

The BCR protein has been shown to interact with:

See also

References

Further reading

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.