Top Qs
Timeline
Chat
Perspective
April 1949 lunar eclipse
Total lunar eclipse April 13, 1949 From Wikipedia, the free encyclopedia
Remove ads
A total lunar eclipse occurred at the Moon’s descending node of orbit on Wednesday, April 13, 1949,[1] with an umbral magnitude of 1.4251. It was a central lunar eclipse, in which part of the Moon passed through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring only about 19 hours after perigee (on April 12, 1949, at 9:35 UTC), the Moon's apparent diameter was larger.[2]
Remove ads
This lunar eclipse was the first of a tetrad, with four total lunar eclipses in series, the others being on October 7, 1949; April 2, 1950; and September 26, 1950.
Remove ads
Visibility
The eclipse was completely visible over central and eastern North America, South America, and Antarctica, seen rising over western North America and the central Pacific Ocean and setting over Africa, Europe, and the Middle East.[3]
![]() ![]() |
Eclipse details
Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipses
Summarize
Perspective
Eclipses in 1949
- A total lunar eclipse on April 13.
- A partial solar eclipse on April 28.
- A total lunar eclipse on October 7.
- A partial solar eclipse on October 21.
Metonic
- Preceded by: Lunar eclipse of June 25, 1945
- Followed by: Lunar eclipse of January 29, 1953
Tzolkinex
- Preceded by: Lunar eclipse of March 3, 1942
- Followed by: Lunar eclipse of May 24, 1956
Half-Saros
- Preceded by: Solar eclipse of April 7, 1940
- Followed by: Solar eclipse of April 19, 1958
Tritos
- Preceded by: Lunar eclipse of May 14, 1938
- Followed by: Lunar eclipse of March 13, 1960
Lunar Saros 121
- Preceded by: Lunar eclipse of April 2, 1931
- Followed by: Lunar eclipse of April 24, 1967
Inex
- Preceded by: Lunar eclipse of May 3, 1920
- Followed by: Lunar eclipse of March 24, 1978
Triad
- Preceded by: Lunar eclipse of June 12, 1862
- Followed by: Lunar eclipse of February 11, 2036
Lunar eclipses of 1948–1951
This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]
The penumbral lunar eclipses on February 21, 1951 and August 17, 1951 occur in the next lunar year eclipse set.
Saros 121
This eclipse is a part of Saros series 121, repeating every 18 years, 11 days, and containing 82 events. The series started with a penumbral lunar eclipse on October 6, 1047. It contains partial eclipses from May 10, 1408 through July 3, 1498; total eclipses from July 13, 1516 through May 26, 2021; and a second set of partial eclipses from June 6, 2039 through August 11, 2147. The series ends at member 82 as a penumbral eclipse on March 18, 2508.
The longest duration of totality was produced by member 43 at 100 minutes, 29 seconds on October 18, 1660. All eclipses in this series occur at the Moon’s descending node of orbit.[6]
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Half-Saros cycle
A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 128.
April 7, 1940 | April 19, 1958 |
---|---|
![]() |
![]() |
Remove ads
See also
Notes
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads