Top Qs
Timeline
Chat
Perspective
August 2008 lunar eclipse
Partial lunar eclipse of 16 August 2008 From Wikipedia, the free encyclopedia
Remove ads
A partial lunar eclipse occurred at the Moon’s ascending node of orbit on Saturday, August 16, 2008,[1] with an umbral magnitude of 0.8095. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A partial lunar eclipse occurs when one part of the Moon is in the Earth's umbra, while the other part is in the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 6.2 days before apogee (on August 10, 2008, at 16:20 UTC), the Moon's apparent diameter was smaller.[2]
Remove ads
Visibility
The eclipse was completely visible over Africa, Europe, Antarctica, and west, central, and south Asia, seen rising over South America and setting over east Asia and Australia.[3]
The planet Neptune was 2 days past opposition, visible in binoculars as an 8th magnitude "star" just two degrees west and slightly south of the Moon.
![]() |
![]() Hourly motion shown right to left |
![]() The Moon's hourly motion across the Earth's shadow in the constellation of Capricornus. |
![]() Visibility map |
Remove ads
Images

Gallery
Progression from Oslo, Norway
- Brighton, Queensland, 20:03 UTC
- Ruzsky District, Russia, 20:21 UTC
- Palinuro, Italy, 20:31 UTC
- Tel Aviv, Israel, 20:43 UTC
- Groningen, Netherlands, 20:50 UTC
- Madrid, Spain, 20:53 UTC
- Jaguariúna, Brazil, 21:00 UTC
- Zürich, Switzerland, 21:06 UTC
- Toulouse, France, 21:07 UTC
- Solna, Sweden, 21:09 UTC
- Boralesgamuwa, Sri Lanka, 21:12 UTC
- Johor Bahru, Malaysia, 21:15 UTC
- Langenbernsdorf, Germany, 21:23 UTC
- Bucharest, Romania, 21:27 UTC
- Rozbórz Długi, Poland, 21:45 UTC
- Nasr City, Egypt, 22:12 UTC
Eclipse details
Shown below is a table displaying details about this particular lunar eclipse. It describes various parameters pertaining to this eclipse.[4]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Remove ads
Related eclipses
Summarize
Perspective
Eclipses in 2008
- An annular solar eclipse on February 7.
- A total lunar eclipse on February 21.
- A total solar eclipse on August 1.
- A partial lunar eclipse on August 16.
Metonic
- Preceded by: Lunar eclipse of October 28, 2004
- Followed by: Lunar eclipse of June 4, 2012
Tzolkinex
- Preceded by: Lunar eclipse of July 5, 2001
- Followed by: Lunar eclipse of September 28, 2015
Half-Saros
- Preceded by: Solar eclipse of August 11, 1999
- Followed by: Solar eclipse of August 21, 2017
Tritos
- Preceded by: Lunar eclipse of September 16, 1997
- Followed by: Lunar eclipse of July 16, 2019
Lunar Saros 138
- Preceded by: Lunar eclipse of August 6, 1990
- Followed by: Lunar eclipse of August 28, 2026
Inex
- Preceded by: Lunar eclipse of September 6, 1979
- Followed by: Lunar eclipse of July 27, 2037
Triad
- Preceded by: Lunar eclipse of October 16, 1921
- Followed by: Lunar eclipse of June 17, 2095
Lunar eclipses of 2006–2009
This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]
The lunar eclipses on July 7, 2009 (penumbral) and December 31, 2009 (partial) occur in the next lunar year eclipse set.
Metonic series
The Metonic cycle repeats nearly exactly every 19 years and represents a Saros cycle plus one lunar year. Because it occurs on the same calendar date, the Earth's shadow will in nearly the same location relative to the background stars.
Saros 138
This eclipse is a part of Saros series 138, repeating every 18 years, 11 days, and containing 82 events. The series started with a penumbral lunar eclipse on October 15, 1521. It contains partial eclipses from June 24, 1918 through August 28, 2026; total eclipses from September 7, 2044 through June 8, 2495; and a second set of partial eclipses from June 19, 2513 through August 13, 2603. The series ends at member 82 as a penumbral eclipse on March 30, 2982.
The longest duration of totality will be produced by member 48 at 105 minutes, 24 seconds on March 24, 2369. All eclipses in this series occur at the Moon’s ascending node of orbit.[6]
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Half-Saros cycle
A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 145.
August 11, 1999 | August 21, 2017 |
---|---|
![]() |
![]() |
Remove ads
See also
Notes
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads