Top Qs
Timeline
Chat
Perspective

Truncated tesseract

Type of tesseract From Wikipedia, the free encyclopedia

Remove ads

In geometry, a truncated tesseract is a uniform 4-polytope formed as the truncation of the regular tesseract.

Thumb
Tesseract
Thumb
Truncated tesseract
Thumb
Rectified tesseract
Thumb
Bitruncated tesseract
Schlegel diagrams centered on [4,3] (cells visible at [3,3])
Thumb
16-cell
Thumb
Truncated 16-cell
Thumb
Rectified 16-cell
(24-cell)
Thumb
Bitruncated tesseract
Schlegel diagrams centered on [3,3] (cells visible at [4,3])

There are three truncations, including a bitruncation, and a tritruncation, which creates the truncated 16-cell.

Remove ads

Truncated tesseract

Summarize
Perspective
Truncated tesseract
Thumb
Schlegel diagram
(tetrahedron cells visible)
Type Uniform 4-polytope
Schläfli symbol t{4,3,3}
Coxeter diagrams
Cells 24 8 3.8.8
16 3.3.3
Faces 88 64 {3}
24 {8}
Edges 128
Vertices 64
Vertex figure Thumb
( )v{3}
Dual Tetrakis 16-cell
Symmetry group B4, [4,3,3], order 384
Properties convex
Uniform index 12 13 14

The truncated tesseract is bounded by 24 cells: 8 truncated cubes, and 16 tetrahedra.

Alternate names

  • Truncated tesseract (Norman W. Johnson)
  • Truncated tesseract (Acronym tat) (George Olshevsky, and Jonathan Bowers)[1]

Construction

The truncated tesseract may be constructed by truncating the vertices of the tesseract at of the edge length. A regular tetrahedron is formed at each truncated vertex.

The Cartesian coordinates of the vertices of a truncated tesseract having edge length 2 is given by all permutations of:

Projections

Thumb
A stereoscopic 3D projection of a truncated tesseract.

In the truncated cube first parallel projection of the truncated tesseract into 3-dimensional space, the image is laid out as follows:

  • The projection envelope is a cube.
  • Two of the truncated cube cells project onto a truncated cube inscribed in the cubical envelope.
  • The other 6 truncated cubes project onto the square faces of the envelope.
  • The 8 tetrahedral volumes between the envelope and the triangular faces of the central truncated cube are the images of the 16 tetrahedra, a pair of cells to each image.

Images

More information Coxeter plane, B4 ...
Thumb
A polyhedral net
Thumb
Truncated tesseract
projected onto the 3-sphere
with a stereographic projection
into 3-space.

The truncated tesseract, is third in a sequence of truncated hypercubes:

Remove ads

Bitruncated tesseract

Summarize
Perspective
More information Bitruncated tesseract ...
Thumb
Net

The bitruncated tesseract, bitruncated 16-cell, or tesseractihexadecachoron is constructed by a bitruncation operation applied to the tesseract. It can also be called a runcicantic tesseract with half the vertices of a runcicantellated tesseract with a construction.

Alternate names

  • Bitruncated tesseract/Runcicantic tesseract (Norman W. Johnson)
  • Tesseractihexadecachoron (Acronym tah) (George Olshevsky, and Jonathan Bowers)[2]

Construction

A tesseract is bitruncated by truncating its cells beyond their midpoints, turning the eight cubes into eight truncated octahedra. These still share their square faces, but the hexagonal faces form truncated tetrahedra which share their triangular faces with each other.

The Cartesian coordinates of the vertices of a bitruncated tesseract having edge length 2 is given by all permutations of:

Structure

The truncated octahedra are connected to each other via their square faces, and to the truncated tetrahedra via their hexagonal faces. The truncated tetrahedra are connected to each other via their triangular faces.

Projections

More information Coxeter plane, B4 ...

Stereographic projections

The truncated-octahedron-first projection of the bitruncated tesseract into 3D space has a truncated cubical envelope. Two of the truncated octahedral cells project onto a truncated octahedron inscribed in this envelope, with the square faces touching the centers of the octahedral faces. The 6 octahedral faces are the images of the remaining 6 truncated octahedral cells. The remaining gap between the inscribed truncated octahedron and the envelope are filled by 8 flattened truncated tetrahedra, each of which is the image of a pair of truncated tetrahedral cells.

Stereographic projections
Thumb Thumb Thumb
Colored transparently with pink triangles, blue squares, and gray hexagons

The bitruncated tesseract is second in a sequence of bitruncated hypercubes:

More information Image, Name ...
Remove ads

Truncated 16-cell

Summarize
Perspective
More information Truncated 16-cell Cantic tesseract ...

The truncated 16-cell, truncated hexadecachoron, cantic tesseract which is bounded by 24 cells: 8 regular octahedra, and 16 truncated tetrahedra. It has half the vertices of a cantellated tesseract with construction .

It is related to, but not to be confused with, the 24-cell, which is a regular 4-polytope bounded by 24 regular octahedra.

Alternate names

  • Truncated 16-cell/Cantic tesseract (Norman W. Johnson)
  • Truncated hexadecachoron (Acronym thex) (George Olshevsky, and Jonathan Bowers)[3]

Construction

The truncated 16-cell may be constructed from the 16-cell by truncating its vertices at 1/3 of the edge length. This results in the 16 truncated tetrahedral cells, and introduces the 8 octahedra (vertex figures).

(Truncating a 16-cell at 1/2 of the edge length results in the 24-cell, which has a greater degree of symmetry because the truncated cells become identical with the vertex figures.)

The Cartesian coordinates of the vertices of a truncated 16-cell having edge length √2 are given by all permutations, and sign combinations of

(0,0,1,2)

An alternate construction begins with a demitesseract with vertex coordinates (±3,±3,±3,±3), having an even number of each sign, and truncates it to obtain the permutations of

(1,1,3,3), with an even number of each sign.

Structure

The truncated tetrahedra are joined to each other via their hexagonal faces. The octahedra are joined to the truncated tetrahedra via their triangular faces.

Projections

Centered on octahedron

Thumb
Octahedron-first parallel projection into 3 dimensions, with octahedral cells highlighted

The octahedron-first parallel projection of the truncated 16-cell into 3-dimensional space has the following structure:

  • The projection envelope is a truncated octahedron.
  • The 6 square faces of the envelope are the images of 6 of the octahedral cells.
  • An octahedron lies at the center of the envelope, joined to the center of the 6 square faces by 6 edges. This is the image of the other 2 octahedral cells.
  • The remaining space between the envelope and the central octahedron is filled by 8 truncated tetrahedra (distorted by projection). These are the images of the 16 truncated tetrahedral cells, a pair of cells to each image.

This layout of cells in projection is analogous to the layout of faces in the projection of the truncated octahedron into 2-dimensional space. Hence, the truncated 16-cell may be thought of as the 4-dimensional analogue of the truncated octahedron.

Centered on truncated tetrahedron

Thumb
Projection of truncated 16-cell into 3 dimensions, centered on truncated tetrahedral cell, with hidden cells culled

The truncated tetrahedron first parallel projection of the truncated 16-cell into 3-dimensional space has the following structure:

  • The projection envelope is a truncated cube.
  • The nearest truncated tetrahedron to the 4D viewpoint projects to the center of the envelope, with its triangular faces joined to 4 octahedral volumes that connect it to 4 of the triangular faces of the envelope.
  • The remaining space in the envelope is filled by 4 other truncated tetrahedra.
  • These volumes are the images of the cells lying on the near side of the truncated 16-cell; the other cells project onto the same layout except in the dual configuration.
  • The six octagonal faces of the projection envelope are the images of the remaining 6 truncated tetrahedral cells.

Images

More information Coxeter plane, B4 ...
Thumb
Net
Thumb
Stereographic projection
(centered on truncated tetrahedron)

A truncated 16-cell, as a cantic 4-cube, is related to the dimensional family of cantic n-cubes:

More information n, Symmetry [1+,4,3n-2] ...
Remove ads
More information D4 uniform polychora ...
More information B4 symmetry polytopes, Name ...
Remove ads

Notes

Loading content...

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads