Top Qs
Timeline
Chat
Perspective
Truncated tetraoctagonal tiling
Semiregular tiling in geometry From Wikipedia, the free encyclopedia
Remove ads
In geometry, the truncated tetraoctagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one octagon, and one hexakaidecagon on each vertex. It has Schläfli symbol of tr{8,4}.
Truncated tetraoctagonal tiling | |
---|---|
![]() Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 4.8.16 |
Schläfli symbol | tr{8,4} or |
Wythoff symbol | 2 8 4 | |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Symmetry group | [8,4], (*842) |
Dual | Order-4-8 kisrhombille tiling |
Properties | Vertex-transitive |
Remove ads
Dual tiling
Summarize
Perspective
![]() |
![]() |
The dual tiling is called an order-4-8 kisrhombille tiling, made as a complete bisection of the order-4 octagonal tiling, here with triangles are shown with alternating colors. This tiling represents the fundamental triangular domains of [8,4] (*842) symmetry. |
Symmetry






There are 15 subgroups constructed from [8,4] by mirror removal and alternation. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. The subgroup index-8 group, [1+,8,1+,4,1+] (4242) is the commutator subgroup of [8,4].
A larger subgroup is constructed as [8,4*], index 8, as [8,4+], (4*4) with gyration points removed, becomes (*4444) or (*44), and another [8*,4], index 16 as [8+,4], (8*2) with gyration points removed as (*22222222) or (*28). And their direct subgroups [8,4*]+, [8*,4]+, subgroup indices 16 and 32 respectively, can be given in orbifold notation as (4444) and (22222222).
Remove ads
Related polyhedra and tilings
Summarize
Perspective
From a Wythoff construction there are fourteen hyperbolic uniform tilings that can be based from the regular order-4 octagonal tiling.
Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 7 forms with full [8,4] symmetry, and 7 with subsymmetry.
Remove ads
See also
Wikimedia Commons has media related to Uniform tiling 4-8-16.
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads