Top Qs
Timeline
Chat
Perspective
Solar eclipse of February 25, 1952
Total eclipse From Wikipedia, the free encyclopedia
Remove ads
A total solar eclipse occurred at the Moon's ascending node of orbit on Monday, February 25, 1952,[1][2][3][4][5][6] with a magnitude of 1.0366. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring 1.4 days after perigee (on February 23, 1952, at 22:30 UTC), the Moon's apparent diameter was larger.[7]
The path of totality crossed French Equatorial Africa, Belgian Congo, Anglo-Egyptian Sudan, Arabia, Pahlavi Iran and the Soviet Union. A partial eclipse was visible for parts of Africa, Europe, West Asia, Central Asia, and South Asia.
Remove ads
Observations

Astronomers from various countries started traveling to Khartoum, capital of Anglo-Egyptian Sudan from January 1952. The team of the United States Naval Research Laboratory made studies in radio astronomy, spectrum, luminosity of corona and spectral observations.[8] Teams of the High Altitude Observatory of Harvard University and University of Colorado analyzed the spectrum of the Balmer series in the hydrogen spectral series.[9] In addition, French astronomer Bernard Ferdinand Lyot, who invented the coronagraph that allows observing the solar corona at any time, not limited to total solar eclipses, died of a heart attack in Cairo, Egypt on his way back from observing the total solar eclipse in Sudan.[10]
Remove ads
Eclipse details
Summarize
Perspective
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[11]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipses
Eclipses in 1952
- A partial lunar eclipse on February 11.
- A total solar eclipse on February 25.
- A partial lunar eclipse on August 5.
- An annular solar eclipse on August 20.
Metonic
- Preceded by: Solar eclipse of May 9, 1948
- Followed by: Solar eclipse of December 14, 1955
Tzolkinex
- Preceded by: Solar eclipse of January 14, 1945
- Followed by: Solar eclipse of April 8, 1959
Half-Saros
- Preceded by: Lunar eclipse of February 20, 1943
- Followed by: Lunar eclipse of March 2, 1961
Tritos
- Preceded by: Solar eclipse of March 27, 1941
- Followed by: Solar eclipse of January 25, 1963
Solar Saros 139
- Preceded by: Solar eclipse of February 14, 1934
- Followed by: Solar eclipse of March 7, 1970
Inex
- Preceded by: Solar eclipse of March 17, 1923
- Followed by: Solar eclipse of February 4, 1981
Triad
- Preceded by: Solar eclipse of April 25, 1865
- Followed by: Solar eclipse of December 26, 2038
Solar eclipses of 1950–1953
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[12]
The partial solar eclipse on July 11, 1953 occurs in the next lunar year eclipse set.
Saros 139
This eclipse is a part of Saros series 139, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 17, 1501. It contains hybrid eclipses from August 11, 1627 through December 9, 1825 and total eclipses from December 21, 1843 through March 26, 2601. There are no annular eclipses in this set. The series ends at member 71 as a partial eclipse on July 3, 2763. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality will be produced by member 61 at 7 minutes, 29.22 seconds on July 16, 2186. This date is the longest solar eclipse computed between 4000 BC and AD 6000.[13] All eclipses in this series occur at the Moon’s ascending node of orbit.[14]
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
Notes
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads